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In this paper, we propose a two-stage algorithm for real-time fault detection and identification of
industrial plants. Our proposal is based on the analysis of selected features using recursive density
estimation and a new evolving classifier algorithm. More specifically, the proposed approach for the
detection stage is based on the concept of the density in the data space, which is not the same as the
probability density function, but is a very useful measure for abnormality/outliers detection. This density
can be expressed by a Cauchy function and can be calculated recursively, which makes it memory and
computational power efficient and, therefore, applicable to on-line applications. The identification/
diagnosis stage is based on a self-developing (evolving) fuzzy-rule-based classifier system proposed in
this paper, called the AutoClass. An important property of AutoClass is that it can start learning “from
scratch”. Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for
AutoClass (the number may grow, with new class labels being added by the online learning process), in a
fully unsupervised manner. In the event that an initial rule base exists, AutoClass can evolve/develop it
further based on the newly arrived faulty state data. In order to validate our proposal, we present
experimental results from a level control didactic process, where control and error signals are used as
features for the fault detection and identification system, but the approach is generic and the number of
features can be significant due to the computationally lean methodology, since covariance or more
complex calculations, as well as storage of old data, are not required. The obtained results are
significantly better than the traditional approaches.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

while the system is still operating in a controllable region, usually
prevents or, at least, reduces productivity losses and health risks.

In the past few decades fault detection and identification (FDI)
field of research has received extensive attention. It is an impor-
tant problem in control and automation engineering and is the
centre of abnormal event management (AEM) field of research
[63]. Applications of FDI techniques in industrial environments are
increasing in order to improve the operational safety as well as to
reduce the costs related to unscheduled stoppages. The impor-
tance of the FDI research in control and automation engineering is
based on the fact that prompt detection of an occurring fault,
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With the increasing complexity of the procedures and scope of
the industrial activities, AEM is a challenging field of study nowa-
days. The human operator plays a crucial role in this matter since
it has been shown that people responsible for AEM often take
incorrect decisions. Industrial statistic shows that 70-90% of the
accidents are caused by human errors [64].

In the industrial context, there are several different types of
faults that could affect the normal operation of a plant. Among
these we can list [53]:

® Gross parameter changes: Also known as parametric faults,
which refer to disturbances to the process from independent
variables, whose dynamics are not known. As examples of
parametric faults one can list a change in the concentration of a
reactant, a blockage in a pipeline resulting in a change of the
flow coefficient and so on.
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® Structural changes: These refer to equipment failures, which
may change the model of the process. An appropriate correc-
tive action to such abnormality would require the extraction of
new modeling equations to describe the current faulty status of
the process. Examples of structural changes are failure of a
controller, a leaking pipe and a stuck valve.

® Faulty sensors and actuators: Also known as additive faults, refer
to incorrect process inputs and outputs, and could lead the
plant variables beyond acceptable limits. Some examples of
abnormalities in the input/output instruments are constant
(positive or negative) bias, intermittent disturbances, satura-
tion, out of range failure and so on.

The entire process of AEM is often divided into a series of steps,
which in fault-tolerant design is called the fault diagnosis scheme.
Fault detection or anomaly detection is the first stage and it has
extreme importance to FDI systems. In this stage, we are able to
identify if the system is working in a normal operating state or in a
faulty mode. However, in this stage, vital information about the
fault, such as physical location, length or intensity, is not provided
to the operator [56].

In this sense, the need of a subsequent stage arises. The detector
system (first stage) continuously monitors the process variables (or
attributes) looking for symptoms (deviations from the normal vari-
ables values) and sends these symptoms to the diagnosis system,
second stage, which is responsible for the classification process.

The diagnosis stage presents its own challenges and obstacles,
and can be handled independently from the first one. It demands
different techniques and solutions, and is divided in two sub-
stages called isolation and identification. The term isolation refers
to determination of the type, location and time of detection of a
fault, and follows the fault detection stage [26]. Identification, on
the other hand, refers to determination of the size and time-
variant behavior of a fault, and follows the fault isolation.

A lot of approaches to FDI have been proposed in the literature. We
can mention, for example, the observer-based [20,41,46,58], analytical
redundancy-based [57,15,65], fuzzy model-based [50,66,27,36], neural
network-based [39,62,18], immune system-based methods [37,38] and
so on. Unfortunately, most of the above-mentioned techniques require
either previous knowledge or empirical observation about the model
or behaviour of the system, need extensive computational efforts or
too many thresholds or problem-specific parameters to be pre-defined
in advance, inhibiting/hampering their use in on-line applications.
Thus, these technical features make difficult their adoption in real
problems.

One group of methods which is worth to mention, and serves
as a basis for comparison with our proposal, later in this paper, is
the group of statistical process control approaches (SPC). SPC deals
with data which are snapshot windows of moving the history of a
process control system [31]. It is used for process variables
monitoring and is based on statistical analysis (mean and standard
deviation values), calculated in time windows and compared with
pre-defined thresholds. Although, SPC is an on-line approach,
most of the applications in use today were developed based on
the premise that the process parameters being controlled follow
Gaussian/normal distributions. Independence of the inputs and
infinite number of observatories are other premises which, in
reality are not satisfied. For further information on SPC methods,
the reader is referred to Martin et al. [49], Cook et al. [21],
Liukkonen and Tuominen [43], Kano et al. [33].

Being aware of these shortcomings, in this paper we propose a
recursive fully unsupervised fuzzy rule-based (FRB) classifier for
fault detection and identification in industrial processes, which
can be generalised for other specific problems. The proposed FDI
system does not demand neither mathematical models based on
first principles nor explicit previous knowledge about the analysed

process. It is based, instead, on the estimation of the density and
proximity in the data space. This density can be expressed by a
Cauchy function and can be calculated recursively [5], which
makes it memory- and, thus, computational power-efficient and
suitable for on-line applications. In this sense, it is autonomous
(user-independent) and is able to perform FDI on-line and without
the above-mentioned disadvantages. The proposed approach has
two well-defined and sequential stages — detection and identifica-
tion — with a minimum of very intuitive parameters, that can be
associated with other existing approaches.

The proposed on-line detection algorithm is based on the
recently introduced recursive density estimation (RDE) approach
[11]. This approach allows us to build, accumulate, and self-learn a
dynamically evolving information model of “normality” based on
the process data for particular specific plant based on the normal/
“good”[accident-free cases only. Theoretically, such an approach
can start fault detection “from scratch” from the very first data
sample observed.

It is important to stress that only a few techniques for data
density analysis in fault detection have been previously proposed,
most of them applied to software fault detection applications and
based on probability density function (PDF), not data distribution
density. Breunig et al. [19] present the probability density-based
local outlier factor (LOF) algorithm. In this approach the anomaly
score of a data sample is defined as the average local probability
density of its neighbors. Similar methods based on the KNN
algorithm were presented in Tang et al. [61,30,51]. However, most
of the existing algorithms suffer from high complexity, therefore,
are not suitable for large datasets or real-time applications.

For the identification stage, the proposed approach is based on
the new self-learning (fully unsupervised) evolving classifier algo-
rithm called the AutoClass. It builds upon the family of evolving
clustering — eClustering [2], ELM [16], DEC [17] - and classifier —
eClass [14], simpleClass [6] - algorithms. The new clustering algo-
rithm, called the AutoClass differs from the eClassO in the way
clusters are defined and updated. While they are based on the
concept of traditional clusters, AutoClass works with the concept of
data clouds [12], structures with no defined boundaries or shapes.
Another innovation, when compared to eClass0, for example, is that
AutoClass can store a finite vector of points (for a limited time) which
do not belong to any existing class and later create a new class from
them. Like eClassO, AutoClass also can start from an empty knowl-
edge base, from the first data sample acquired.

Among the related work, it is important to mention some of the
recently presented approaches in the field of fault detection, using
adaptive and evolving FRB models. The paper [55] presents an
approach to FDI based on data-driven evolving fuzzy models and
dynamic residual analysis for extracting fault indicators. The
authors introduce a two-stage algorithm, one off-line (model
identification and training) and one on-line (fault detection),
where neither annotated samples nor fault patterns/models need
to be available a priori. The FDI system is successfully applied to a
power plant coal mills. Lemos et al. [40], Lughofer and Guardiola
|45] present two different fully on-line FDI systems, using evolving
fuzzy classifiers, based on the evolving Takagi-Sugeno (eTS)
algorithm, first introduced by Angelov and Filev [9] and Angelov
and Zhou [14]. The work of Lughofer [44] also worth mentioning,
since the author developed an evolving image classifier, capable of
sort the images into “good” (fault-free production items) and
“bad” (faulty production items). Regarding the extraction of
decision rules from data streams and handling time changing
data, few approaches can be mentioned, e.g. Gama and Kosina [29]
and Kosina and Gama [35]. In the first paper, the authors present a
new algorithm to learn rule sets, designed for open-ended data
streams and, in the latter, an on-line, any-time and one-pass
algorithm for learning decision rules in the context of time
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