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a b s t r a c t

In this paper, the passivity problem of memristor-based neural networks (MNNs) with time-varying
delays is investigated. New delay-dependent criteria are established for the passivity of MNNs. The time-
varying delays of our paper are not necessary to be differentiable, so our results are less conservative,
which enrich and improve the earlier publications. An example is given to demonstrate the effectiveness
of the obtained results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Memtistor, as a contraction of memory and resistor, was
originally theorized by Chua in 1971 [1]. It was predicted as the
fourth circuit element (the other three are resistor, capacitor and
inductor). In 2008, scientists at Hewlett-Packard Laboratories
claimed to have found Chua's missing memristor based on an
analysis of thin film of titanium dioxide [2]. In the past few years,
memristor has received increasing research attention for its
memory characteristic and nanometer dimension. From previous
works [3,4], we know that memristor can be used to mimic the
synaptic connections in a human brain. Hence, the model of
memristor-based neural networks (MNNs) can be built to emulate
the human brain where synapses are implemented with memris-
tors. Recently, Wen and Zeng [8], Wu and Zeng [9,10], Zhang
and Shen [11–14] have studied the MNNs with delays. A lot of
significant results concerning the MNNs have been obtained
[8–16].

It is well known that the passivity theory [34] plays an
important role in the analysis of the stability of dynamical systems
[32,33,39–41], and it has received a lot of attention since 1970s

[17–26,34–38]. In fact, the passive properties of a system can keep
the system internal stability. Recently, passivity properties have
been related to MNNs [8,10]. In [8], passivity conditions of MNNs
are obtained under the assumption that the time-varying delays are
continuously differentiable, and the derivative of time-varying
delay is bounded. In [10], passivity analysis is conducted with
constant time delays. However, time delays can occur in an irregular
fashion, and sometimes are not differentiable. Motivated by the
above discussions, in this paper, we investigate the passivity of
MNNs with time-varying delays which the delays are unnecessarily
differentiable. New delay-dependent passivity conditions are estab-
lished. The obtained results are more general and less conservative
compared with the results in [8,10].

The organization of this paper is as follows. Some preliminaries
are introduced in Section 2. In Section 3, new delay-dependent
criteria are established for the passivity of MNNs in terms of LMIs.
Then, an example is given to demonstrate the effectiveness of the
obtained results in Section 4. Finally, conclusions and discussions
are given in Section 5.

Notations: Throughout this paper, Rn denotes the n-dimensional
Euclidean space. AT and A�1 denote the transpose and the inverse
of the matrix A, respectively. A40ðAZ0Þ means that the matrix A
is symmetric and positive definite (semi-positive definite). n

represents the elements below the main diagonal of a symmetric
matrix. I is the identity matrix with compatible dimension. diag
f⋯g denotes a block-diagonal matrix.
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2. System description and preliminaries

In this paper, we consider the memristor-based neural net-
works (MNNs) as follows:

_xiðtÞ ¼ �diðxiðtÞÞxiðtÞþ ∑
n

j ¼ 1
aijðxiðtÞÞf jðxjðtÞÞ

þ ∑
n

j ¼ 1
bijðxiðtÞÞf jðxjðt�τjðtÞÞÞþuiðtÞ;

yiðtÞ ¼ f iðxiðtÞÞ; tZ0; i; j¼ 1;2;…;n;
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where

θij ¼
1; ia j;

�1; i¼ j;

(

xi(t) is the state variable of the i-th neuron, aijðxiðtÞÞ and bijðxiðtÞÞ
denote the feedback connection weight and the delayed feedback
connection weight, respectively. f j : R-R is bounded continuous
function, ui(t) is an external input function, τjðtÞ corresponds to the
transmission delay and satisfy 0rτjðtÞrτ; i; j¼ 1;2;…;n. dn

i 40;
dnn

i 40; an

ij; a
nn

ij ; b
n

ij; b
nn

ij ; i; j¼ 1;2;…;n are all constant numbers.
yiðtÞ ¼ f iðxiðtÞÞ; tZ0; i¼ 1;2;…;n is the output of system (1). The
initial condition of system (1) is: xðsÞ ¼ ϕðsÞ ¼ ðϕ1ðsÞ;ϕ2ðsÞ;…;

ϕnðsÞÞT ACð½�τ;0�;RnÞ.
Obviously, system (1) is a discontinuous system, then its

solution is different from the classic solution and cannot be
defined in the conventional sense. In order to obtain the solution
of system (1), some definitions and lemmas are given.

Definition 1. For a system with discontinuous right-hand sides:

dx
dt

¼ FðxÞ; xð0Þ ¼ x0; xARn; tZ0 ð2Þ

where FðxÞ : Rn⟶Rn is discontinuous. A set-valued map is defined
as

ΦðxÞ ¼ ⋂
δ40

⋂
μðNÞ ¼ 0

co½FðBðx; δÞ\N�;

where co½E� is the closure of the convex hull of set E, E� Rn,
Bðx; δÞ ¼ fy : Jy�xJoδ; x; yARn; δARþ g, and N� Rn, μðNÞ is Lebes-
gue measure of set N.

A solution in Filippov's sense [5] of system (2) with initial
condition xð0Þ ¼ x0ARn is an absolutely continuous function
xðtÞ; tA ½0; T �; T40, which satisfy xð0Þ ¼ x0 and differential inclu-
sion:

dx
dt

AΦðxÞ; for a:a: tA ½0; T �:

If F(x) is bounded, then the set-valued function ΦðxÞ is
upper semicontinuous with non-empty, convex and compact
values [5]. Then the solution x(t) of system (2) with initial
condition exists and it can be extended to the interval ½0; þ1Þ
in the sense of Filippov.

By applying the theories of set-valued maps and differential
inclusions [5–7], then system (1) can be rewritten as the following

differential inclusion:

_xiðtÞA�½di; di�xiðtÞþ ∑
n

j ¼ 1
½aij; aij�f jðxjðtÞÞ

þ ∑
n

j ¼ 1
½bij; bij�f jðxjðt�τjðtÞÞÞþuiðtÞ;

for a:a: tZ0; i; j¼ 1;2;…;n; ð3Þ

where the output is yiðtÞ ¼ f iðxiðtÞÞ, ½ξ
i
; ξ i� is the convex hull of

½ξ
i
; ξ i�; ξ i; ξ iAR. di ¼minfdn

i ; d
nn

i g, di ¼maxfdn

i ; d
nn

i g, aij ¼minfan

ij ;
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nn
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nn

ij g, bij ¼maxfbn

ij ; b
nn

ij g. The
other parameters are the same as in system (1).

Definition 2. A function xðtÞ ¼ ðx1ðtÞ; x2ðtÞ;…; xnðtÞÞT is a solution
of (1), with the initial condition xðsÞ ¼ ϕðsÞ ¼ ðϕ1ðsÞ;ϕ2ðsÞ;…;ϕn

ðsÞÞT ACð½�τ;0�;RnÞ, if x(t) is an absolutely continuous function
and satisfies the differential inclusion (3).

Throughout this paper, we consider the following assumption
for the activation functions:

(H1) For jA1;2;…;n; f j is bounded and there exists constant
kj40 such that

0r
f jðs1Þ� f jðs2Þ

s1�s2
rkj; f jð0Þ ¼ 0;

for all s1; s2AR; s1as2.

Lemma 1. Suppose that assumption (H1) is satisfied, then solution x
(t) with initial condition ϕðsÞ ¼ ðϕ1ðsÞ;ϕ2ðsÞ;…;ϕnðsÞÞT ACð½�τ;0�;RnÞ
of (1) exists and it can be extended to the interval ½0; þ1Þ.

Before giving our main results, a definition and a lemma [19]
which are useful in the proof are given as follows.

Definition 3. System (1) is called passive if there exists a scalar
γ40 such that

2
Z tp

0
yT ðsÞuðsÞ dsZ�γ

Z tp

0
uT ðsÞuðsÞ ds

for all tpZ0 and for all solution of (1) with xð0Þ ¼ 0.

Lemma 2. Given constant matrices Σ1;Σ2;Σ3, where
ΣT
1 ¼ Σ1;Σ

T
2 ¼ Σ2, then

Σ1 Σ3

ΣT
3 �Σ2

 !
o0

is equivalent to the following conditions:

Σ240 and Σ1þΣ3Σ
�1
2 ΣT

3o0:

3. Main results

For presentation convenience, in the following, we denote
K ¼ diagðk1; k2;…; knÞ, D¼ diagðDiÞn �n;Di ¼minfjdij; jdijg; A¼ ðAijÞ
n�n;Aij ¼maxfjaijj; jaijjg;B¼ ðBijÞn�n;Bij ¼maxfjbijj; jbijjg.

Theorem 1. Suppose assumption (H1) holds. If there exist a scalar
γ40, three symmetric matrices P40;Q140;Q240, three diagonal
matrices E40; F40;G40, and matrices Rijði; j¼ 1;2;3;4;5; ir jÞ,
such that the following two LMIs hold

R¼

R11 R12 R13 R14 R15

n R22 R23 R24 R25

n n R33 R34 R35

n n n R44 R45

n n n n R55

2
6666664

3
7777775
40; ð4Þ
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