
A total variation based nonrigid image registration by combining
parametric and non-parametric transformation models

Wenrui Hu, Yuan Xie, Lin Li, Wensheng Zhang n

State Key Laboratory of Intelligent Control and Management of Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China

a r t i c l e i n f o

Article history:
Received 11 October 2013
Received in revised form
19 February 2014
Accepted 1 May 2014
Communicated by Hantao Liu
Available online 27 May 2014

Keywords:
Nonrigid registration
Free-form deformation
Non-parametric transformation
Total variation
Split Bregman iteration

a b s t r a c t

To overcome the conflict between the global robustness and the local accuracy of dense nonrigid image
registration, we propose a union registration approach by combining parametric and non-parametric
transformation models. On one hand, to guarantee the robustness, we constrain the displacement field ϕ
using a mapping difference metric between the B-spline parametric space Ψ and the non-parametric
transformation space Φ. On the other hand, to correct the densely and highly localized geometrical
distortions, we introduce a total variation (TV) regularization term for the displacement field ϕ.
Accounting for the effect of spatially varying intensity distortions, the residual complexity (RC) is used as
the similarity metric. Moreover, to solve the proposed union nonrigid registration, which is a composite
convex optimization problem by the smooth ℓ2 term and the non-smooth ℓ1 term (TV), we design a two-
stage algorithm using split Bregman iteration. Experiments with both synthetic and real images from
different domains illustrate that this approach can capture the local details of transformation accurately
and effectively while being robust to the spatially varying intensity distortions.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Image registration aims to geometrically match up two or more
images of the same scene, taken at different times, from different
viewpoints, or by different sensors, for structure/target localiza-
tion, difference detection, and many other purposes [1]. It is
widely used in medical imaging [2], remote sensing [3], finger
print or face recognition [4], image compression [5], video
enhancement [6], etc. Existing image registration methods are
either feature-based or intensity-based [7]. Because identification
and extraction of image features is often a challenging and time-
consuming process for feature-based methods [8–10], intensity-
based image registration (IBIR) [11,12,14–16], by which the trans-
formation is estimated directly from the observed image intensi-
ties of the two images, has received much attention recently.

Most existing IBIR procedures estimate the geometrical trans-
formation or displacement field ϕ globally by optimizing a mini-
mization problem, such as

ϕn ¼ argmin
ϕAΦ

Dðf ;uðϕÞÞþRðϕÞ ð1Þ

where Dð�Þ and Rð�Þ are respectively the distance metric and the
regularization term. Φ is a specific transformation space. The
entire images f (reference or fixed image) and u (floating or
moving image) are involved in the optimization. The choice of
transformation model is of great importance for the registration
process as it entails an important compromise between computa-
tional efficiency and richness of description. It also reflects the
class of transformations that are desirable or acceptable, and
therefore limits the solution to a large extent.

In the literature, there are two methods to model the transfor-
mation field ϕ [17,18]. The first method is parametric, which
models ϕ in a parametric space Ψ. The number of parameters
corresponds to the degrees of freedom of the transformation
model and varies greatly, from six in the case of rigid transforma-
tions [18] (including rotation, scaling, translation, and other affine
transforms) to tens of thousands when the nonrigid or deformable
transformations [19,20] are considered. Rigid transformations are
global in nature, thus, they cannot model local geometric differ-
ences between images. On the contrary, the parametric nonrigid
transformations are capable of locally warping the moving image
to align with the fixed image. The second method is non-
parametric, which models ϕ directly in the transformation space
Φ. The non-parametric image registration has its transformation
field directly optimized through the registration process, e.g., the
demons algorithm [12,13], the physical model-based methods
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[17,18], the optical flow [21–23]. This type of registration needs an
explicit displacement vector for every pixel. When dense nonrigid
transformations are considered, the degrees of freedom of the
transformation model are tremendous.

Due to the relatively simple computation and other salient
properties, the parametric free form deformation (FFD) techniques
based on B-spline basis are getting popular to deal with the
nonrigid transformation problem in image registration community
[11,24–26]. The goal of free-form deformations is to provide a
convenient means of modeling arbitrary deformations applied to
objects. Rather than being motivated by physical models, the FFD
registration is derived from either interpolation theory or approx-
imation theory [27]. In other words, it approximates the under-
lying displacement field ϕ rather than taking the exact same value.
In the classic FFD registration [11], a 2D nonrigid deformation
ϕ¼[X Y]T is parameterized using a set of 2D control points
ψ ¼ ½UV �T , such that

ϕ¼ Kψ ; K ¼ B 0
0 B

� �
; ψAΨ ð2Þ

where B denotes the matrix of the B-spline basis functions and Ψ
is the B-spline parametric space.

One main difficulty of the FFD approach is to cope with the
conflict between the global robustness and the local accuracy
[28,29]. In [29], Shi et al. referred to the robustness as the ability to
recover the deformation in the presence of noise, and the accuracy
as the ability to reconstruct the highly localized and potentially
discontinuous deformation with as little error as possible. The
trade-off between accuracy and robustness stems from the fact
that the FFD approach uses a smooth B-spline basis to model the
contribution of each control point to the deformation. To model
global and smooth deformations a coarse control point grid
spacing is typically used. To allow very localized deformations a
finer control point spacing is required, however, this can render
the FFD registration less robust as the model has far more degrees
of freedom which must be optimized. Moreover, the standard
smoothness constraints for nonrigid registration methods
[11,12,21] assume that the deformation within a neighborhood
changes only gradually since the underlying deformation itself is
smooth. Combining the implicit smoothness of the B-spline basis
and the explicit smoothness constraint in the regularization leads
to FFD registration results with smooth deformations.

Compared to the parametric FFD method, the non-parametric
registration has a stronger descriptive power for the transforma-
tion due to the high degrees of the freedom of transformation
space Φ. However, this model enrichment may accompanied by
the model's complexity which in turn results in a challenging and
computationally demanding inference. Usually, to reduce the risk
of being tracked in local minima, a physical model based regular-
ization term for ϕ is needed and a multilevel optimization strategy
is used [17,18]. When dense nonrigid deformations are considered,
the non-parametric registration has the ability to correct highly
localized deformations but lacks the robustness to reconstruct
such deformations in the presence of noise.

Many approaches to both parametric and non-parametric
nonrigid registration have been proposed that aim to overcome
the conflict between robustness and accuracy in estimation of
the deformation field ϕ. For parametric FFD registration, some
research focussed on the adaptive parameterization of the B-spine
control point grid [30,31]. Recently, Shi et al., in [28,29], assumed
that the deformation was sparse in the parametric space Ψ and
then introduced a sparse regularization term on the basis of the
classical FFD registration. The sparse FFD (SFFD) method reduced
the conflict between global smoothness and local details of the
transformation to some extent, but the assumption of sparsity in
SFFD is limited in the scenario without densely localized

geometrical distortions. For non-parametric registration approach,
in particular the optical flow algorithm, Wedel et al. employed the
total variation (TV) regularization to preserve discontinuities in
the flow field and applied the robust ℓ1 norm in the data fidelity
term to eliminate outliers [33]. More recently, sparse representa-
tion has been proposed to evaluate the patch similarity between
two images [34] and to constrain the transformation [35].

In this paper, to overcome the main conflict in the FFD
registration, we propose a union nonrigid image registration
approach by combining parametric and non-parametric transfor-
mation models. On one hand, our approach explicitly takes the
implicit smoothness of the B-spline basis as the regularization for
the non-parametric registration, which also can be considered as a
constraint of the displacement field ϕ using a mapping difference
metric between the B-spine parametric space Ψ and the transfor-
mation space Φ. It is a strong constraint that guarantees the
robustness of the registration result. On the other hand, inspired
by the work in [33] and [35], we introduce a total variation (TV)
term to describe ϕ in the space of bounded variation (BV), which
can preserve the densely and highly localized deformations. In
addition, suitable similarity measures are crucial for the intensity-
based registration. Considering that real-world images often have
spatially varying intensity distortions, which is caused by inho-
mogeneities from staining, illumination or attenuation [14,32], we
adopt the residual complexity (RC) [14] as the similarity metric.
Compared to other similarity measures, registration by minimizing
the residual complexity is simple in terms of both computational
complexity and implementation, and meanwhile produces accu-
rate registration results in problems with spatially varying inten-
sity distortions. Furthermore, to solve the proposed union nonrigid
registration, which is a composite convex optimization problem by
the smooth ℓ2 term and the non-smooth ℓ1 term (TV), we design a
two-stage algorithm using split Bregman iteration [36].

Our union registration combines the robustness of the FFD
method and the flexibility of the non-parametric method, and
outperforms the separate method, the parametric or the non-
parametric. Moreover, due to the rapid convergence of split Breg-
man iteration algorithm in dealing with the TV-based optimiza-
tion problem, the computation of our two-stage algorithm only
needs a few iterations on a fixed level of image resolution after the
residual complexity based FFD registration [14], which is more
efficient than the FFD-based methods adaptively selecting control
point grid spacing [30,31].

The paper is organized as follows. Section 2 describes the
proposed registration approach in detail. Experimental results are
given in Section 3 to verify our approach and show the perfor-
mance as compared with other methods, and finally we conclude
and discuss the method in Section 4.

2. Proposed method

2.1. The registration model

Consider two images f and uðϕÞ to be aligned, assuming the
following intensity relationship [14]:

f ¼ uðϕÞþsþη ð3Þ
where ϕ¼ ½XY �T is a 2D deformation field, η is the zero mean
Gaussian noise, s is an intensity correction field which accounts for
intensity nonstationarities and complex spatially varying intensity
distortions in mono-modal settings. Assuming s and ϕ indepen-
dent, the maximum a posteriori (MAP) approach to estimate s and
ϕ is to maximize the probability

Pðϕ; sjf ;uÞpPðf ;ujϕ; sÞPðϕÞPðsÞ ð4Þ
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