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a b s t r a c t

Semi-supervised learning is a hot topic in the field of pattern recognition, this paper analyzes an
effective classification algorithm – Extreme Learning Machine (ELM). ELM has been widely used in the
applications of pattern recognition and data mining for its extremely fast training speed and highly
recognition rate. But in most of real-world applications, there are irregular distributions and outlier
problems which lower the classification rate of ELM (kernel ELM). This is mainly because: (1) Overfitting
caused by outliers and unreasonable selections of activation function and kernel function and (2) the
labeled sample size is small and we do not making full use of the information of unlabeled data either.
Against problem one, this paper proposes a robust activation function (RAF) based on analyzing several
different activation functions in-depth. RAF keeps the output of activation function away from zero as
much as possible and minimizes the impacts of outliers to the algorithm. Thus, it improves the
performance of ELM (kernel ELM); simultaneously, RAF can be applied to other kernel methods and a
neural network learning algorithm. Against problem two, we propose a semi-supervised kernel ELM (SK-
ELM). Experimental results on synthetic and real-world datasets demonstrate that RAF and SK-ELM
outperform the ELM which use other activation functions and semi-supervised (kernel) ELM methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The widespread popularity of single-hidden layer feedforward
neural networks (SLFNs) in classification and prediction fields is
mainly due to their excellent capability of approximating complex
nonlinear functions. However, conventional learning methods of
SLFNs utilize gradient-based algorithms to get the iterative solu-
tion. In this case, we need to consider the convergence problem to
avoid multiple iterations and local optimal solution. Therefore, the
learning speed of SLFNs becomes the bottleneck in applications.
Recently, Huang et al. [1] mentioned that appropriate output
weights were not dependent on the input weights and hidden
layer neurons' biases. According to this discovery, they proposed a
variety of SLFNs without an iterative calculation process called
Extreme Learning Machine (ELM). ELM randomly chooses the
input weights and the hidden neurons’ biases and determines
the output weights through a simple linear system at an extremely
fast training speed. At the same time, ELM can avoid problems of
the local optimal solution and the slow speed of convergence.

Furthermore, when dealing with classification problems, ELM can
get better solutions than SVM. In order to extend the learning
capability of ELM, many researchers have improved ELM. Huang
et al. have proved that SLFNs can approximate any continuous
target function by randomly adding nodes of activation functions
like RBF. Based on that, they proposed an incremental ELM
algorithm [3] and a convex incremental ELM algorithm [4]. Tang
et al. used the local Lanczos bidiagonalization method to calculate
the output weights of ELM to enhance the stability of calculating a
generalized inverse matrix. However, the number of iteration in
Lanczos has a close relationship with the features of the target
matrix and might have a great effect on computation efficiency.

When there are outliers in training datasets, the accuracy of ELM
will be greatly affected. For this reason, Hortata et al. [7] proposed a
Robust ELM algorithm, this algorithm constructs an Extended
Complete Orthogonal Decomposition to get the output weights
and calculates the final output weights by iterating the initial
output weights. The time complexity of Robust ELM equals ELM
which calculates output weights with SVD. However, Robust ELM is
more robust to outliers. This is because Robust ELM lowers the
empirical risk of ELM through a reasonable numerical calculation.
Thus, we can know that the robustness of ELM has a close
relationship with empirical risk. Deng et al. [8] proposed a weighted
Regular ELM (RELM), this algorithm lowered the empirical risk
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weights of outliers to enhance the robustness of RELM to outliers by
weighting. However, this method is hard to be extended to a kernel
method.

Huang et al. [9,10] have discussed the case of ELM with RBF and
have proved that selections of input weights and bias do not
influence the network's performance in theory. In the ELM algo-
rithm, the features of hidden layer output matrix affect the output
weights greatly. When dealing with high-dimensional data, the
hidden layer output matrix may include lots of elements close to
zero and the final output weights will be affected. Taking the Yale
face datasets as an example, when the dimensions of Yale face
images are reduced to 100 with linear dimensionality reduction
methods, the 2 condition number of hidden layer output matrix is
1.0409eþ13 with RBF(Data has been normalized), but with
Sigmoid kernel the 2 condition number is only 114.4732. There-
fore, RBF seriously affects the features of hidden layer output
matrix which leads to inaccurate output weights. When there are
outliers or noises, this phenomenon is more serious. To solve this
problem, this paper proposes a Robust Activation Function (RAF).
RAF translates the Euclidean distance measure in the Gaussian
kernel function to Cosine measure. The Cosine measure can avoid
the influences of outliers and the overfitting phenomenon as much
as possible. Furthermore (see Fig. 1), more details can be seen in
our previous work [11]. Simultaneously, RAF kernel has good
features of activation functions and will not cause the ill-posed
problem of hidden layer output matrix. Therefore, the perfor-
mance of ELM can be improved greatly.

Although, the methods mentioned above have done a lot of
improvements on ELM, but in real-world datasets, there are
always few labeled samples. Therefore, in recent years, semi-
supervised learning (SSL) attracts much attention of many
researchers [12,13,15] and many excellent results appear. Such as
Belkin et al. [12] proposed a Laplace graph SSL framework; Yan
et al. [13] proposed a l 1 graph which is successfully applied in SSL
based on sparse representation theory; Wang et al. translate LLE to
a graph to implement the SSL based on the idea of LLE.

To improve the generalization capability of ELM and making
full use of unlabeled samples, Liu et al. [5] proposed a semi-
supervised ELM. This algorithm extends ELM to a semi-supervised
version based on the graph theory and the semi-supervised
learning framework proposed by Belkin. They also applied the
semi-supervised ELM to a Wi-Fi positioning problem. But this
method is only a particular solution of ELM in the semi-supervised
environment. Besides, Huang et al. [16] proposed another excellent
semi-supervised ELM version.

This paper utilizes RAF to implement ELM, the robustness and
stability of ELM are improved. Meanwhile, we extend ELM to

SK-ELM. SK-ELM can learn nonlinear distribution of datasets better
and have a better generalization ability than ELM and SELM.
Furthermore, we apply RAF to SK-ELM to strengthen the stability
of SK-ELM and avoid the generalized inverse problem of ill-posed
matrix. The main contributions of this paper are as follows:

(1) We propose a robust activation function (RAF) and prove
that RAF can promote the performance of ELM in theory and
experiments. RAF can be used in any kernel methods.

(2) We discuss the solutions of SELM more intensively and
point out the suitable scope of SELM's solution.

(3) Reference [8] indicated that Kernel ELM could not find the
appropriate model when dealing with outliers. This paper extends
ELM to SK-ELM and applies RAF to SK-ELM to improve the
robustness of the ELM kernel method.

2. A brief of ELM

For N arbitrary distinct samples ðxi; tiÞ, where X ¼ ½x1; x2;
…; xN �T ARD�N , ti ¼ ½ti1; tt2;…; tim�T ARm, with ~N being the hidden
neurons in the network and the activation function is g(x):

∑
~N

i ¼ 1
βigðaixjþbjÞ ¼ oj ð1Þ

where j¼ 1;…;N, ai ¼ ½ai1; ai2;…; ain�T is the input weight vector
connecting input neurons and the ith hidden neuron, bi is the bias
of the ith hidden node, ai � xi is the inner product of ai and xi.

Given hidden neurons ~N , Eq. (1) can be rewritten in a matrix
form Hβ¼ T , where the network hidden layer output matrix is

H¼
gða1; x1; b1Þ ⋯ gða ~N ; x1; b ~N Þ

⋮ ⋯ ⋮
gða1; xN ; b1Þ ⋯ gða ~N ; xN ; b ~N Þ

2
64

3
75
N� ~N

; β¼
βT
1

⋮
βT

~N

2
664

3
775

~N�m

and

T ¼
tT1
⋮
tTN

2
64

3
75¼

t11 ⋯ t1m
⋮ ⋮ ⋮
tN1 ⋯ tNm

2
64

3
75:

The standard SLFNs aim to find some appropriate âi, b̂i and
β̂ ði¼ 1;…; ~NÞ to satisfy

JHðâ1;…; â ~N ; b̂1;…; b̂ ~N Þβ�T J ¼ min
ai ;bi ;β

JHða1;…; a ~N ; b1;…; b ~N Þβ�T J

ð2Þ
Eq. (2) can be solved with gradient-based algorithms, Huang

et al. [1] have proved that the weights between input layer and

Fig. 1. Effects of different activation functions to the hidden layer. (a) RBF and (b) RAF.
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