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a b s t r a c t

In spectral clustering, one defines a similarity matrix for a collection of data points, transforms the
matrix to get the so-called Laplacian matrix, finds the eigenvectors of the Laplacian matrix, and obtains a
partition of the data points using the leading eigenvectors. The last step is sometimes referred to as
rounding, where one needs to decide how many leading eigenvectors to use, to determine the number of
clusters, and to partition the data points. In this paper, we propose a novel method using latent tree
models for rounding. The method differs from previous rounding methods in three ways. First, we relax
the assumption that the number of clusters equals the number of eigenvectors used. Second, when
deciding how many leading eigenvectors to use, we not only rely on information contained in the
leading eigenvectors themselves, but also make use of the subsequent eigenvectors. Third, our method is
model-based and solves all the three subproblems of rounding using latent tree models. We evaluate our
method on both synthetic and real-world data. The results show that our method works correctly in the
ideal case where between-clusters similarity is 0, and degrades gracefully as one moves away from the
ideal case.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is a data analysis task where one assigns similar data
points to the same cluster and dissimilar data points to different
clusters. It is an important topic in machine learning, as well as
related fields such as statistics, pattern recognition and data
mining. The most commonly used clustering methods are prob-
ably mixture models and K-means. Those methods yield ‘globular’
clusters and perform poorly when the true clusters are non-
convex and are shaped, for instance, like crescent moons.

Spectral clustering [2] is one way to overcome the aforemen-
tioned shortcoming. It has gained prominence in recent years.
The idea is to convert clustering into a graph cut problem. More
specifically, one first builds a similarity graph over the data points
using a measure of data similarity as edge weights and then
partitions the graph by cutting some of the edges. Each connected
component in the resulting graph is a cluster. The cut is done so as
to simultaneously minimize the cost of cut and balance the sizes of
the resulting clusters [3,4].

The graph cut problem is NP-hard and is hence relaxed. In the
relaxed problem, the cluster indicator functions are allowed to be

real-valued. The solution is given by the leading eigenvectors of
the so-called Laplacian matrix, which is a simple transformation of
the original data similarity matrix. In a post-processing step, a
partition of the data points is obtained from those real-valued
eigenvectors. This post-processing step is called rounding [5,6].

In this paper we focus on rounding. Although the spectral
clustering literature is abundant, there are relatively few papers on
rounding. In general, rounding is considered an open problem.
There are three subproblems: (1) decide how many (and more
generally which) leading eigenvectors to use; (2) determine
the number of clusters; and (3) determine the members of each
cluster. Among the three, the first two subproblems are considered
much harder.

Previous rounding methods fall into two groups depending on
whether they assume the number of clusters is given. When the
number of clusters is known to be k, rounding is usually done
based on the first k eigenvectors. The data points are projected
onto the subspace spanned by those eigenvectors and then the
K-means algorithm is run on that space to get k clusters [2]. Bach
and Jordan [6] approximate the subspace using a space spanned by
k piecewise constant vectors and then run K-means on the latter
space. This turns out to be equivalent to a weighted K-means
algorithm on the original subspace. Zhang and Jordan [7] observe a
link between rounding and the orthogonal Procrustes problem
in Mathematics and iteratively use an analytical solution for the
latter problem to build a method for rounding. Rebagliati and Verri
[8] ask the user to provide a number K that is larger than k and
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obtain k clusters based on the first K eigenvectors using a random-
ized algorithm that repeatedly calls K-means as a subroutine.

When the number of clusters is not given, one needs to
estimate it. A common method is to manually examine the
difference between every two consecutive eigenvalues starting
from the first two. If a big gap appears for the first time between
the kth and (kþ1)th eigenvalues, then one uses k as an estimate of
the number of clusters. Zelnik-Manor and Perona [9] propose an
automatic method. The method considers a number of integers.
For each integer k, it tries to rotate the first k eigenvectors so as to
align them with the canonical coordinate system for the eigen-
space spanned by those vectors. A cost function is defined in terms
of how well the alignment can be achieved. The k with the lowest
cost is chosen as an estimate for the number of clusters. Xiang and
Gong [10] and Zhao et al. [11] question the assumption that
clustering should be based on all the eigenvectors from a con-
tinuous block at the beginning of the eigenvector spectrum.
They use heuristics to choose a collection of eigenvectors which
do not necessarily form a continuous block, and then use Gaussian
mixture models to determine the number of clusters and to
partition the data points. Socher et al. [12] assume the number
of leading eigenvectors to use is given. Based on those leading
eigenvectors, they determine the number of clusters and the
membership of each cluster using a non-parametric Bayesian
clustering method.

In this paper, we propose and study a novel model-based
approach to rounding. The method differs from the previous meth-
ods in three ways. First, we relax the assumption that the number of
clusters equals the number of eigenvectors that one uses for round-
ing. In the ideal case where between-cluster similarity is 0, if one
knows the number kt of true clusters, one can indeed recover the kt
clusters from the first kt eigenvectors. However, this might not be the
case in non-ideal cases or when the number of clusters one tries
to obtain is not kt. Our method allows the number of clusters to
differ from the number of eigenvectors. This is conducive to robust
performance in non-ideal cases.

Second, we choose a continuous block of leading eigenvectors
for rounding just as Zelnik-Manor and Perona [9]. The difference is
that when deciding the appropriateness of the first k eigenvectors,
Zelnik-Manor and Perona use only information contained in those
eigenvectors, whereas we also use information contained in
subsequent eigenvectors. So our method uses more information
and hence the choice is expected to be more robust.

Third, we solve all the three subproblems of rounding and we
do so within one class of models, namely latent tree models [13].
In contrast, most previous methods assume that the first two
subproblems are solved and the solutions are equal, and focus only
on the third subproblem. Xiang and Gong [10] and Zhao et al. [11]
do consider all three subproblems. However, they do not solve all
the subproblem within one class of models. They first choose a
collection of eigenvectors based on some heuristics and then use
Gaussian mixture models to solve the other two subproblems.
Zelnik-Manor and Perona [9] also consider all three subproblems.
However, their method is not model-based and it assumes the
number of clusters equals the number of eigenvectors. An advan-
tage of the model-based approach is that its performance degrades
gracefully as we move away from the ideal case.

The remaining paper is organized as follows. In Section 2 we
review the basics of spectral clustering and point out two key
properties of the eigenvectors of the Laplacian matrix in the ideal
case. In Section 3 we describe a straightforward method for
rounding that takes advantage of the two key properties. This
method is fragile and breaks down as soon as we move away from
the ideal case. In Sections 4 and 5 we propose a model-based
method for rounding that exploits the same two properties. The
method is named LTM-ROUNDING. It is evaluated on synthetic data in

Section 6 and is compared with other methods in Section 7. This
paper concludes in Section 8.

2. Basics of spectral clustering

In this section we review the basics of spectral clusters and
point out two properties that we exploit later.

2.1. Similarity measure and similarity graph

Let X ¼ fx1;…; xng be a set of n data points in an Euclidean
space Rd. In order to partition the data, one needs to define a non-
negative similarity measure sij for each pair xi and xj of data points.
This can be done in a number of ways. In our work we consider
two measures:

� k-NN similarity measure: sij ¼ 1 if xi is one of the k nearest
neighbors of xj , or vice versa, and sij ¼ 0 otherwise.

� Gaussian similarity measure: sij ¼ expð�jjxi�xjjj2=s2Þ, where
s is a parameter that controls the width of neighborhood of
each data point.

The matrix S¼ ðsijÞi;j ¼ 1;…;n is called the similarity matrix.
Given a similarity measure, the data can be represented as an

weighted undirected graph G. In the graph there is a vertex vi
representing each data point xi, and there is an edge between two
vertices vi and vj if and only if sij40. The value sij is used as the
edge weight and is sometimes denoted as wij. The graph is called
the similarity graph and its adjacency matrix W ¼ ðwijÞi;j ¼ 1;…;n is
the same as the similarity matrix S. Note that the similarity graph
G is a complete graph when the Gaussian similarity measure is
used, and it might not be so when the k-NN similarity measure
is used.

2.2. Graph Laplacian

In spectral clustering one transforms the similarity matrix to
get another matrix called the graph Laplacian matrix. There are a
number of Laplacian matrices to choose from [2]. In this paper, we
use the normalized Laplacian matrix Lrw given by

Lrw ¼ I�D�1S; ð1Þ
where IARn�n is the identity matrix, D¼ ðdijÞARn�n is the diag-
onal degree matrix given by dii ¼∑n

j ¼ 1sij, and D�1 is the inverse of
D. The following proposition is well-known [2].

Proposition 1. The Laplacian matrix Lrw satisfies the following
properties:

1. Lrw is positive semi-definite.
2. The eigenvalues of Lrw are non-negative and the smallest one is 0.
3. If the similarity graph is connected, then there is only one

eigenvalue that equals 0.
4. The unit vector 1ARn that consists of all 1's is an eigenvector for

eigenvalue 0.

The eigenvalues of Lrw are arranged in ascending order as
0¼ λ1rλ2r⋯rλn and the eigenvectors for the eigenvalues are
arranged in the same order as e1; e2;…; en. The eigenvectors at the
front of the list are called the leading eigenvectors. Note that an
eigenvector of Lrw is a vector of n real numbers. It can also be
viewed as a function over the data points. As a matter of fact, in
the graph cut formulation of spectral clustering [2], an eigenvector
is a cluster indicator function for a cut. Two example eigenvectors
are shown in Fig. 1.
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