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a b s t r a c t

In this work a specific preconditioning technique is developed to improve the convergence speed of a
discrete-time recurrent neural network for quadratic optimization with general linear constraints. The
discrete-time network is a model recently published with the broadest range of applicability to various
optimization problems and constraints. The proposed preconditioning technique is shown to improve
the convergence speed of the model significantly, and thus contribute to enhance the application of the
model in these problems. In addition to the theoretical analysis, extensive experimental results are
presented to illustrate the technique developed, and to show the significant improvement attained.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Constrained quadratic optimization has numerous scientific
and engineering applications, e.g. systems identification, control
systems, signal and image processing, and many others. The use of
neural models is a powerful approach to solve optimization
problems mainly because such models are simpler than classical
optimization techniques and amenable for parallel realization.
Many neural networks have been proposed for quadratic optimi-
zation [1–16]. Most of them are continuous-time dynamical
systems [10–16]. The interest on developing discrete-time neural
networks for optimization has been increasing in the last few
years [1–8], due to the advantages they have over continuous-time
models in digital implementations for real-time applications. In
addition, they are specifically designed to be easily implemented
in hardware. For the discrete networks, however, it is compara-
tively more difficult to secure stability and good convergence
properties, therefore improvements in this sense are crucial.

The models published in [1,2,5] and [9] are discrete-time
networks that are able to solve the quadratic optimization pro-
blem with linear constraints. This problem consists on minimizing
a quadratic function in the space defined by a set of bound
constraints, linear inequality constraints and linear equality con-
straints. The equality restrictions can be easily eliminated with a

simple procedure proposed in [10]. Using it, the problem of
quadratic optimization with general linear constraints can be
formulated as

minimize E¼ 1
2
xTMxþgTx;

xAΩ;Ω¼ fxARnjadrAxrau; drxrug; ð1Þ

where xARn is the vector of optimization variables, M is a
symmetric nxn matrix, gARn, A is a mxn matrix that defines the
inequality constraints, ad; auARm are vectors that contain the
lower and upper limits of the inequality constraints, and d;uARn

are vectors that contain the lower and upper bound constraints.
Convergence to the optimal solution of (1) is assured with the

neural networks developed in [1,2,5] and [9], provided that certain
conditions hold, thus these models have different capabilities.
With respect to the conditions that the matrix M must fulfill, the
systems published in [2] and [5] need a matrix M positive definite,
whereas the ones in [1] and [9] can work with M positive
semidefinite. With respect to the constraints, the models proposed
in [5] and [9] can only work with a number of restrictions (bounds
plus inequality) not higher than the number of variables. Only the
models developed in [1] and [2] are able to work with any number
of linear constraints of any type.

Thus, the neural network proposed in [1] is, up to our knowl-
edge, the model with the broadest range of applicability since it
can solve the convex quadratic problems with general linear
constraints, whereas the one in [2] can only solve the strictly
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convex case. As was shown in [2], the handicap of the model
developed in [1] is its extreme slowness in some optimization
problems, and the goal of the present work is to improve the
convergence speed of such model.

On the other hand, it is known that the performance of
discrete-time algorithms is influenced by the numerical character-
istics of the particular mathematical formulation of the problem.
In this respect, the models proposed in [2] and [9] take advantage
of a preconditioning procedure that reformulates the original
optimization problem in the appropriate way to improve their
convergence speed. Here, the numerical characteristics of the
algorithm published in [1] are analyzed, and a preconditioning
procedure is developed specifically to accelerate it.

The work starts with an analysis of the neural network for the
strictly convex case with only bound constraints. Note that, if the
number of restrictions is lower or equal than the number of variables,
the total set of restrictions can be transformed onto a set of bound
constraints. For this case, it has been developed a conditioning
procedure which is optimal in the sense that it maximizes a lower
bound of the convergence rate of the network. Based on this result, a
conditioning procedure has been devised for the not strictly convex
case with number of constraints greater than the number of
optimization variables. The method has been tested with a number
of examples having very different characteristics. The experimental
results obtained constitute a strong evidence of the goodness of the
proposed conditioning technique, since a significant improvement of
network behavior has been found systematically.

2. Neural network model and conditioning procedure

In [1] a discrete-time neural network was proposed to solve the
variational inequality problem consisting on finding a vector xnAΩ
such that:

ðMxnþgÞT ðx�xnÞZ0; 8xAΩ ð2Þ
where Ω is a region defined by linear constraints as in (1). It is well
known that, if M is symmetric, then problem (2) is equivalent to
problem (1). The neural model proposed in [1] is

yðkþ1Þ ¼ yðkÞþhðN̂þM̂ÞT f ðN̂yðkÞ�M̂yðkÞ� ĝÞ�N̂yðkÞ ð3Þ
where yT¼(x,ν)Τ, ν are the m Lagrange multipliers associated with
the inequality constraints in (1), f implements the bounds [d,u]x
[ad,au], h is a positive constant, and:

M̂¼ M �AT

Ο I

 !
; N̂¼ I Ο

A Ο

� �
; ĝ ¼ g

0

� �

This neural network can solve problem (1), with M positive
definite or semidefinite. The following results about the conver-
gence of (3) to the solution of (1) can be found in [1]:

� If N̂
T
M̂ is positive definite, then model (3) is exponentially

convergent if 0ohrmin(2/ηmax,1/(2πmin)), where ηmax is the
maximum eigenvalue of ðN̂þM̂ÞðN̂þM̂ÞT and πmin is the mini-
mum eigenvalue of N̂

T
M̂. The convergence rate has a lower

bound s(h)¼� ln(r(h)), where r(h))¼1–2 hπmin.� If N̂
T
M̂ is positive semidefinite, then model (3) is globally

convergent if 0ohr1⧸ηmax.

From here, in this work a theoretical analysis has been made for

the case of N̂
T
M̂ positive definite, with the aim of finding a way to

maximize the lower bound of the convergence rate of the net-
work. Based on the results obtained, a preconditioning technique

for model (3) has been developed valid for both cases, N̂
T
M̂

positive definite and semidefinite.

2.1. Case of N̂
T
M̂ positive definite

2.1.1. New theoretical results

Result 1. The exponential convergence condition 0ohrmin
(2/ηmax,1/(2πmin)) is equivalent to 0ohr2/(1þλmax)2, where
λmax is the maximum eigenvalue of M.

Proof. First, it is easy to realize that N̂
T
M̂ contains the matrix M in

its nxn upper left corner, and zeros in the rest of its elements. So,

the condition N̂
T
M̂40 implies that there are no inequality con-

straints and M is positive definite: N̂
T ¼ I and N̂

T
M̂ ¼ M̂ ¼M40.

Thus ðN̂þM̂ÞðN̂þM̂ÞT ¼ ðIþMÞ2 and, consequently, ηmax¼(1þλmax)2

and πmin¼λmin, where λmin is the minimum eigenvalue of M. On the
other hand, we have (1þλmax)2Z(1þλmin)2Z4λmin¼4πmin, from
which we obtain 2/ηmax¼2/(1þλmax)2r1/(2πmin) and, conse-
quently, min(2/ηmax,1/(2πmin))¼ 2/(1þλmax)2.&

Result 2. The lower bound of the convergence rate, s(h)¼� ln(r(h))
where r(h))¼1–2 hπmin, is maximum when h¼hopt¼2/(1þλmax)2,
and is

sopt ¼ � lnðroptÞ with ropt ¼ 1� 4λmin

ð1þcMλminÞ2
; ð4Þ

where cM is the condition number of M: cM¼λmax/λmin.

Proof. It is obvious that s¼� ln(r) is maximum when r is
minimum, and r¼1–2 hπmin is lower the higher is h, so the
optimal value of this constant is the maximum one that assures
convergence: hopt¼2/(1þλmax)2. With it, taking into account that
πmin¼λmin, we easily obtain (4).□

Result 3. The conditioning procedure that maximizes the lower
bound of the convergence rate sopt is the one that makes cM as low
as possible and λmax¼1. The corresponding maximal value smax

opt is

smax
opt ¼ � ln rmin

opt

� �
with rmin

opt ¼ 1�1=cM ð5Þ

Proof. To maximize the lower bound of the convergence rate sopt

we must minimize ropt. Looking at (4) we can see that ropt depends
on cM and λmin. In order to analyze the dependence of ropt with λmin

the first and second derivatives are made:

dropt
dλmin

¼ 4c2Mλ
2
min�4

ð1þcMλminÞ2
¼ 4ðcMλmin�1Þ

ðcMλminþ1Þ ¼ 0 ) λmin ¼ 1=cM

) λmax ¼ 1;
d2ropt
dλ2min

¼ 8cM
ðcMλminþ1Þ2

40

where the fact that λmin40 and cM40 has been used. So, for a
given value cM of the condition number, the corresponding ropt
takes its minimum value when λmin¼1/cM, i.e., λmax¼1. Substitut-
ing it in (4) we obtain (5). On the other hand, it is obvious that for a
fixed value of λmin the lowest possible value of ropt corresponds to
the lowest possible value of cM.□

2.1.2. Preconditioning procedure
From the analysis made in Section 2.1.1 we have concluded

that, to maximize sopt, the condition number cM should be made
as low as possible. To decrease cM the technique developed in [11]
will be used. In [11] several matrix conditioners P were developed
to obtain a matrix H0 ¼PHP better conditioned than H. Optimal
diagonal conditioners were proven to be those with elements
pii ¼ K=

ffiffiffiffiffi
hii

p
with K40. This conditioning has been used success-

fully in non-linear neural systems such as [2,9,12] and [13]. At this
point, it is interesting to remark that the values of the convergence
rates obtained in [2,9,12] and [13] for the corresponding networks
only depend on the condition number of the corresponding
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