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a b s t r a c t

Recent research in memristor–CMOS neuromorphic learning systems has led to the practical realization
of neuro-inspired learning architectures. At present, the deep understanding of nonlinear dynamical
mechanisms governing memristive neural systems is still an open issue. In this paper, the global
exponential stability problem is investigated for a class of memristive neural systems with time-varying
delays. By employing comparison principle, some novel global exponential stability results are derived.
These stability conditions also improve upon some existing results. In addition, the obtained results are
convenient to estimate the exponential convergence rate. These theoretical studies are very useful in
analyzing the composite behavior of complex memristor circuits.

Crown Copyright & 2014 Published by Elsevier B.V. All rights reserved.

1. Introduction

The neuronal synapse (or electrical synapse) is a crucial
element in biological neural networks (or artificial neural net-
works). The resistance of a memristive system closely depends on
its past historical states and exactly this functionality can be easily
realized synaptic behavior in a brain-like system. With the devel-
opment of applications, memristive nanodevices as synapses and
conventional CMOS technology as neurons are widely adopted.
In recent years, various kinds of hybrid memristor–CMOS neural
learning systems have been proposed for building very large scale
systems with a spike-timing-dependent-plasticity learning mechan-
ism [1–14]. Such neuromorphic architecture can provide a great deal
of inspiration for systems biologist, theoretical physicist and elec-
tronics engineer to design brain-like processing systems. This
approach permits the use of basic electrical circuits as a model for
biological systems, which promotes the development of hardware
that mimics biological architectures in the nervous systems. In
[1,2,5], some entirely new neuronal synaptic learning mechanisms
are described through complex hierarchical nanoscale memristor
structures. The physical architecture and design principles of
brain-style neural associative memories are proposed in Pershin
and Di Ventra [6]. Generally, memristive synaptic strength is the

conductance of memristor. Thus, the composite behavior of multiple
memristor circuits is extremely complex [3,4,8–14]. Consequently,
the electrical characteristics are not yet fully understood. On the
other hand, the electrical characteristics can more deeply reveal the
associated biological mechanisms, such as learning and forgetting.

As pointed out in [3,8–14], analysis and design of memristive
neurodynamic systems is particularly important when the promis-
ing characteristics of memristor–CMOS neuromorphic systems are
used to revolutionize nanoelectronics. A problem is that memris-
tive systems perform stateful logic operation, thereby inspiring
varied resistance values of the memristors, i.e., from synapse ON
to synapse OFF. This mechanism makes the nonlinear dynamic
analysis and design inevitably a bottleneck [8–12]. From the point
of view of cybernetics, a memristive neurodynamic system is
basically a state-dependent nonlinear network cluster. Over the
years, a lot of interesting concepts and properties on nonlinear
systems have been reported, see [15–43]. Whereas, in the past
decades, analysis and design of the state-dependent nonlinear
network cluster is still an issue open to discussions, and the
practical promotion for state-dependent nonlinear network clus-
ter is not a reality yet. Consequently, nanoscale memristor neuro-
morphic learning systems suffer from high mismatch in general.
And because of that, we more hope to reveal the dynamic
evolution process.

Recently, Guo et al. [3] analyze the global exponential dissipa-
tivity of memristive recurrent neural system via Lyapunov method,
M-matrix theory and LaSalle invariant principle. Within mathe-
matical framework of the Filippov solution, the exponential
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stability about the memristive recurrent neural system is investi-
gated in [8,13]. In [9] and [10], based on drive-response concept,
differential inclusions theory and Lyapunov functional method, the
exponential synchronization for coupled memristive neural sys-
tems is studied. In [11], some delay-dependent exponential stabi-
lization criteria in terms of linear matrix inequalities for the
memristive neural system are obtained via nonsmooth analysis
and control theory. In order to investigate internal stability, some
sufficient conditions ensuring the exponential passivity of mem-
ristive neural system with multiple time delays are derived in [12].
Periodic oscillation in neurodynamic systems is an interesting
dynamic behavior. Zhang et al. [14] present some analytical results
on the persistent periodic oscillation of a class of memristive
recurrent neural systems.

However, in the existing literature, the obtained results are
somewhat complicated, so proper advantage is not being taken of
characteristics of memristive system. It is worth thinking deeply
about that within mathematical framework of the Filippov solu-
tion, the comparison principle can be adopted according to
the characteristics of memristive system, rather than the general
Lyapunov method or the Lyapunov functional method. In addition,
an important issue on neurodynamic systems is the convergence
rate. The convergence rate can determine the speed of neural
computations, which is not only theoretically interesting but also
of practical importance to determine the stability. Most impor-
tantly, some existing results in the latest publications are based on
some unsuitable assumption conditions [8–10,13,14], for all this,
we need to re-develop strict logical inference and provide the
right types of theoretical criteria.

This paper attempts to derive some less conservative condi-
tions ensuring the global exponential stability for memristive
neural system with time-varying delays. The main contributions
of this paper can be summarized as follows: (1) In view of some
inappropriate assumption conditions in the existing literature, we
revise former logical inference and re-develop reasonable analy-
tical framework. (2) The comparison principle represents a popu-
lar and effective methodology, which can solve the complexity of
the model evoked by memristor nonlinearity and achieve good
effect. (3) The exponential convergence rate in our criteria can be
effectively estimated or calculated. As we all know, the memristive
neurodynamic system is still quite incipient and to the best of our
knowledge no existing result has been reported for exploring the
related convergence rate. (4) The proposed method in this paper
can be applied to the general nonlinear hybrid systems. Applica-
tion of some novel techniques from the theory of nonlinear
network cluster to memristive systems yields a deep insight into
the nonlinear dynamics under investigation.

2. Preliminaries

Consider a class of memristive neurodynamic systems described
by the following differential equations: for i¼ 1;2;…;n,

_xiðtÞ ¼ �xiðtÞþ ∑
n

j ¼ 1
aijðxiðtÞÞf jðxjðtÞÞ

þ ∑
n

j ¼ 1
bijðxiðtÞÞf jðxjðt�τjðtÞÞÞ; ð1Þ

where xi(t) is the voltage of the capacitor Ci, 0rτiðtÞrτ (τ40 is a
constant) is the time-varying delay, f ið�Þ is feedback function
satisfying f ið0Þ ¼ 0, aijðxiðtÞÞ and bijðxiðtÞÞ represent memristor-based
weights, and

aijðxiðtÞÞ ¼
Wij

Ci
� sginij; bijðxiðtÞÞ ¼

Mij

Ci
� sginij;

sginij ¼
1; ia j;

�1; i¼ j;

(

in which Wij and Mij denote the memductances of memristors Rij

and Fij, respectively. And Rij represents the memristor between the
feedback function f iðxiðtÞÞ and xi(t), Fij represents the memristor
between the feedback function f iðxiðt�τiðtÞÞÞ and xi(t).

According to the feature of pinched hysteresis loop and the
characteristic of dynamical memristor resistance [8,12], then

aijðxiðtÞÞ ¼
âij; sginij

df jðxjðtÞÞ
dt

�dxiðtÞ
dt

r0;

�aij; sginij
df jðxjðtÞÞ

dt
�dxiðtÞ

dt
40;

8>>><>>>: ð2Þ

bijðxiðtÞÞ ¼
b̂ij; sginij

df jðxjðt�τjðtÞÞÞ
dt

�dxiðtÞ
dt

r0;

�bij; sginij
df jðxjðt�τjðtÞÞÞ

dt
�dxiðtÞ

dt
40;

8>>><>>>: ð3Þ

for i; j¼ 1;2;…;n, where âij, �aij, b̂ij, and �bij are constants.
Throughout this paper, solutions of all the systems considered

in the following are intended in Filippov's sense. cof ~Π ; bΠ g denotes
closure of the convex hull generated by real numbers ~Π and bΠ . En
is an n� n identity matrix. Let aij ¼maxfâij; �aijg, aij ¼minfâij; �aijg,
bij ¼maxfb̂ij;

�bijg, bij ¼minfb̂ij;
�bijg, ~aij ¼maxfjâijj; j �aijjg, ~bij ¼max

fjb̂ijj; j �bijjg, for i; j¼ 1;2;…;n.
The initial condition of system (1) is assumed to be

xðtÞ ¼ ðx1ðtÞ; x2ðtÞ;…; xnðtÞÞT

¼ϕðtÞ ¼ ðϕ1ðtÞ;ϕ2ðtÞ;…;ϕnðtÞÞT ; t0�τrtrt0; ð4Þ

where ϕiðtÞACð½t0�τ; t0�;RÞ, i¼ 1;2;…;n.
In addition, from (2) and (3), it follows that f ið�Þði¼ 1;2;…;nÞ

are differentiable, and thus we have

ki ¼ sup
χ̂ a �χ

f iðχ̂ Þ� f ið �χ Þ
χ̂� �χ

���� ����; i¼ 1;2;…;n; 8 χ̂ ; �χAR: ð5Þ

where constants ki40, i¼ 1;2;…;n.
By the theories of differential inclusions and set-valued maps,

from (1), it follows that for i¼ 1;2;…;n,

_xiðtÞA�xiðtÞþ ∑
n

j ¼ 1
cofâij; �aijgf jðxjðtÞÞ

þ ∑
n

j ¼ 1
cofb̂ij;

�bijgf jðxjðt�τjðtÞÞÞ: ð6Þ

Clearly, for i; j¼ 1;2;…;n,

cofâij; �aijg ¼ ½aij; aij�; cofb̂ij;
�bijg ¼ ½bij; bij�:

A solution xðtÞ ¼ ðx1ðtÞ; x2ðtÞ;…; xnðtÞÞT (in the sense of Filippov)
of system (1) with initial condition xðsÞ ¼ϕðsÞ, sA ½t0�τ; t0�, is
absolutely continuous on any compact interval of ½t0; þ1Þ, and

_xiðtÞA�xiðtÞþ ∑
n

j ¼ 1
cofâij; �aijgf jðxjðtÞÞ

þ ∑
n

j ¼ 1
cofb̂ij;

�bijgf jðxjðt�τjðtÞÞÞ:

Definition 1. A constant vector x¼ ðxn1; xn2;…; xnnÞT is called an
equilibrium point of system (1), if for i¼ 1;2;…;n,

0A�xni þ ∑
n

j ¼ 1
cofâij; �aijgf jðxnj Þþ ∑

n

j ¼ 1
cofb̂ij;

�bijgf jðxnj Þ:
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