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h i g h l i g h t s

• We present our tour-guide robot which is able to learn routes from humans.
• We detail the route recording and reproduction processes of our robot.
• We introduce a novel multi-sensorial algorithm for robot localization.
• We describe several demonstrations that we have carried out with our robot.
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a b s t r a c t

Traditionally, route information is introduced in tour-guide robots by experts in robotics. In the tour-
guide robot that we are developing, we allow the robot to learn new routes while following an instructor.
In this paper we describe the route recording process that takes place while following a human, as well
as, how those routes are later reproduced.

A key element of both route recording and reproduction is a robust multi-sensorial localization al-
gorithm that we have designed, which is able to combine various sources of information to obtain an
estimate of the robot’s pose. In this work we detail how the algorithmworks, and howwe use it to record
routes. Moreover, we describe how our robot reproduces routes, including path planning within route
points, and dynamic obstacle avoidance for safe navigation. Finally, we show through several trajectories
how the robot was able to learn and reproduce different routes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The route information that a tour-guide robot needs is usually
introduced by a robotics expert in the laboratory. Contrary to that,
we propose a tour-guide robot that allows anyone to teach routes
to it, by letting the robot follow them. After a brief route learning
stage, our robot will be able to reproduce that route on demand.

Therefore, to record and reproduce a route, we have pro-
vided our robot with the ability to estimate its position in the
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environment where it operates. This is not an easy task because in-
door environments contain symmetries, objects that can change its
positionwith time and temporary occlusions. In this sense, humans
are a challenge themselves: this kind of robots operate in environ-
ments where many humans can significantly change the robot’s
perception of the environment. Because of this, a robust localiza-
tion is of key importance for us: if the robot does not record the cor-
rect path while it follows the instructor, the instructor will need to
repeat the teaching process. For this reason, a key element of both
our route recording and reproduction is a robust multi-sensorial
localization algorithm thatwehave designed,which is able to com-
bine various sources of information to obtain an accurate estimate
of the robot’s pose.

In previous works we have described two important elements
of our proposal: how our robot is able to detect and track hu-
mans [1], and also how it is able to interact with humans [2]. In
this work, we describe the remaining parts: (a) the route record-
ing process that takes place in our robotwhen it is following a route
instructor, and (b) the route reproduction process that takes place
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when a user demands a route. More specifically, we describe our
multi-sensorial localization algorithm, its advantages over single-
sensor location algorithms, and how we use it to record routes.
Moreover, we detail how our robot reproduces routes, including
pathplanningwithin route points, anddynamic obstacle avoidance
for safe navigation. Finally, we show through several trajectories
how our robot was able to learn and reproduce different routes.

2. Related work

In the late nineties, the first well-known tour-guide robots
(Rhino [3] and Minerva [4]) had no online route learning abilities.
In fact, route informationwas introduced in the robot by an expert.
This has been a common element in the tour-guide robots that
were developed afterwards. Examples of those include: RoboX, [5],
which was a tour-guide robot designed for long time operation in
a public exposition where the routes were introduced by experts
before the exposition, and Robotinho [6], which was one of the
first humanoid tour-guide robots. Its routes were also manually
introduced in a pre-operational stage of the robot. Even though
that there have been improvements in route management, the
insertion of route information in the robot has remained as part of
a heavy pre-operational stage carried by an expert. The only case
that we have found that might introduce certain route learning
abilities is a recent tour-guide robot [7] that states that new routes
can be created on the fly. Unfortunately no details about the
process are given.

Contrary to the route recording problem, mobile robot localiza-
tion in indoor environments has been deeply studied in the past
years. The researchers behind the first tour-guide robots Rhino
and Minerva laid the foundations of one of the most popular
approaches nowadays: the Monte Carlo Localization (MCL) algo-
rithm [8]. It consisted in estimating the robot’s pose by integrating
sensorial information in a particle filter. Laser rangefinders are the
most widely used sensors for mobile robot localization. Other sen-
sors, such as sonars [9], and cameras [10] have been successfully
used as well. In the next years, the popularity of particle filters for
robot localization kept growingwith improved versions of the orig-
inal MCL algorithm.

3. Multi-sensor algorithm for mobile robot localization

Generally, localization algorithms use only one sensor. Thismay
be a problem, speciallywhen: (a) the sensor data is highly noisy, (b)
the sensor fails to provide data, (c) different areas look alike to the
sensor, etc. These problems get worse in crowded environments,
because there are peoplemoving aroundwhich produce occlusions
or changes in the environment like the moving of the furniture. In
order to solve these issues, we have proposed [11,12] a localization
algorithm that combines the evidence supplied by several sensors.

The solution that we propose is based on the Augmented
Monte Carlo Localization Algorithm (AMCL), and unlike other solu-
tions [13] (e.g. Kalman Filters), it can properly handle: (a) sensors
with non-Gaussian noise, (b) multi-modal estimations of the pose
of the robot, (c) multi-modal sensor models, (d) non-synchronized
sensors, and (e) sensorswith different data rates that can even stop
providing data (e.g. sensor failures).

The goal of our solution is to estimate, at any time t , the robot’s
pose s⃗t using: (1) perceptual information Z⃗t (or the set of sensor
measurements), and (2) control data ut (the robot movement as
provided by odometry encoders). The robot’s pose corresponds to
s⃗t = (xt , yt , θt), where xt and yt are the position coordinates, and
θt is the orientation one.

Essentially, in order to accomplish our goal, we have to pre-
viously compute the likelihood bel(s⃗t) of every possible pose of
our robot, using ut and Z⃗t (we call this process pose probability

estimation, Section 3.1). Then, we will perform a pose estimation
process that is able to obtain the robot’s pose s⃗t using these likeli-
hoods (Section 3.2).

3.1. Pose probability estimation

Following a Bayesian filtering approach [14], the likelihood
assigned to each robot pose bel(s⃗t)will be the posterior probability
over the robot state space conditioned on the control data ut and
the sensor measurements Z⃗t :

bel(s⃗t) = p(s⃗t |Z⃗t , ut , ⃗Zt−1, ut , . . . , Z⃗0, u0). (1)

Assuming that the current state s⃗t suffices to explain all the pre-
vious states,measurements and control data (Markov assumption),
we can estimate bel(s⃗t) recursively [14]:

bel(s⃗t) ∝


p(s⃗t | ⃗st−1, ut)bel( ⃗st−1)d ⃗st−1


p(Zt |s⃗t). (2)

In this equation, the term

p(s⃗t | ⃗st−1, ut)bel( ⃗st−1)d ⃗st−1 is in

charge of inferring the new bel(s⃗t) from bel( ⃗st−1) and ut . On the
other hand, the term p(Z⃗t |s⃗t) corresponds to the update process in
charge of sensor fusion, where Z⃗t = {z1, z2, . . . , znt } is the set of all
sensormeasurements at time t (nt is the number of sensorsmodal-
ities available at time t). Therefore, p(Z⃗t |s⃗t) = p(z1, z2, . . . , znt |s⃗t)
represents the probability that, at time t , the system receives the
sensormeasurements {z1, z2, . . . , znt } conditioned on state s⃗t . This
joint probability function may be very hard to estimate in practice,
especially if our sensors provide information at different data rates.
For this reason, we assume that the sensor measurements are con-
ditionally independent given the state of the robot; therefore:

bel(s⃗t) ∝


p(s⃗t | ⃗st−1, ut)bel( ⃗st−1)d ⃗st−1

 nt
k=1

p(zkt |s⃗t). (3)

In order to be able to apply Eq. (3), we must know: (1) the
initial belief distribution bel(s0) (it canbe chosen randomly), (2) the
motion model of the robot p(s⃗t | ⃗st−1, ut), and (3) the measurement
model p(zkt |s⃗t) of each sensor k. The motion model represents the
probability of transition from state ⃗st−1 to state s⃗t , provided ut . This
model depends on the odometry of the robot, but it is common to
assume that it follows a multivariate normal distribution [14]:

p(s⃗t | ⃗st−1, ut) ∼ N (fmov( ⃗st−1, ut), Σs) (4)

where fmov is a function that models the movement of the robot,
and Σs represents the noise of the model. On the other hand,
the measurement model p(zkt |s⃗t) depends on the nature of each
specific sensor. This will be described in detail in Section 4.

3.1.1. Estimation with a particle filter
Eq. (3) can be approximated very efficiently using a particle

filter [14]. In this regard, bel(s⃗t) can be approximated with a set
ofM random weighted samples or particles:

bel(s⃗t) ≈ P⃗t = {
⃗p1t , . . . , ⃗pMt } = {{s1t , ω

1
t }, . . . , {s

M
t , ωM

t }} (5)

where each particle ⃗pit consists, at time t , of a possible robot state
sit and a weight ωi

t (likelihood) assigned to it. We estimate Eq. (3)
using the Augmented Monte Carlo Localization algorithm (AMCL)
with low variance resampling [14]. Essentially, this algorithm
proceeds as follows:

Initially, all particles are distributed randomly over the state
space and are assigned equal weights ( 1

M ). Then, the algorithm
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