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a b s t r a c t

Given several different new product development projects and limited resources, this paper is concerned
with the optimal allocation of resources among the projects. This is clearly a multi-objective optimization
problem (MOOP), because each new product development project has both a profit expectation and a loss
expectation, and such expectations vary according to allocated resources. In such a case, the goal of multi-
objective new product development (MONPD) is to maximize the profit expectation while minimizing the
loss expectation. As is well known, Pareto optimality and the Pareto front are extremely important to resolve
MOOPs. Unlike many other MOOP methods which provide only a single Pareto optimal solution or an
approximation of the Pareto front, this paper reports a novel method to calculate the complete Pareto front
for the MONPD. Some theoretical conditions and a ripple-spreading algorithm together play a crucial role in
finding the complete Pareto front for the MONPD. Simulation results illustrate that the reported method, by
calculating the complete Pareto front, can provide the best support to decision makers in the MONPD.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

New product development plays an extremely crucial role in
company survival and success in the modern increasingly competi-
tive global market; every year, billions of dollars are invested in
various new product development projects (NPDPs) worldwide [1–
5]. Obviously, not all NPDPs are successful, and there never lack
examples where a big-brand company collapses after an NPDP
because it misjudges market trends and/or consumes considerable
of capital. To avoid such a tragedy, an effective practice is “not to put
all eggs in one basket”. Therefore, a company may often have several
NPDPs proceeding at one time. Each NPDP has both a profit
expectation and a loss expectation, and such expectations vary
according to the resources allocated to the NPDP. Basically, the
greater the allocated resources the higher the profit expectation is.
Increased allocated resources may reduce the failure possibility
during the development stage of an NPDP, but cannot necessarily
provide a better guarantee of market success. If anything goes wrong
during the marketing stage due to many external, uncertain and

uncontrollable factors, the larger resource allocation only means a
bigger loss. Common sense in the financial sector predicts that a high
profit expectation usually comes with a big loss expectation [6].
Therefore, decision makers often have to make a choice between
high-profit-big-risk options and low-profit-small-risk options, based
on their risk taking willingness and understanding of a market
environment. Since available resources are always limited, decision
makers usually need to optimize their investment portfolio, in order
to maximize the profit expectation while minimizing the loss
expectation – two conflicting objectives. In this paper, we are
particularly concerned with the problem of allocating limited
resources among several NPDPs, so that the overall profit expectation
can be maximized while the overall loss expectation can be mini-
mized. This clearly fits in the scope of a multi-objective optimization
problem (MOOP), and hereafter we call the concerned problem
multi-objective new product development (MONPD).

To resolve the MONPD, we need to make use of the Pareto
front. As the most important concept in MOOPs, the Pareto front
originates from the concept of Pareto efficiency proposed to study
economic efficiency and income distribution [7]. In general
MOOPs, a solution is called Pareto optimal if there exists no other
solution that is better in terms of at least one objective and is not
worse in terms of all other objectives [8,9]. The projection of a
Pareto optimal solution in the objective space is called a Pareto
point. All Pareto points, i.e., the projections of all Pareto optimal
solutions, compose the complete Pareto front of an MOOP.
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The history of such problems is long resulting in the development of
many methods for resolving various MOOPs. Basically, most methods
can be classified into three categories: aggregate objective function (AOF)
based methods [10–14], Pareto-compliant ranking (PCR) based methods
[15–25], and constrained objective function (COF) based methods
[26–30]. An AOF method combines all of the objectives of an MOOP
to construct a single aggregate objective function, and then resolve the
single-objective problem to get a Pareto optimal solution. However, it
involves subjectiveness in constructing an AOF, and it often fails to find
some Pareto optimal solutions if the Pareto front is not convex. A PCR
method may overcome such drawbacks of AOF methods by operating
on a pool of candidate solutions and favoring non-dominated solutions.
Population-based evolutionary approaches (such as genetic algorithms,
particle swarm optimization and ant colony optimization) often play a
key role in PCR methods to identify multiple Pareto optimal candidate
solutions. It should be noted that, due to the stochastic nature of PCR
methods, their outputs are Pareto optimal candidate solutions, not
necessarily real Pareto optimal solutions. Theoretically, COF methods,
by optimizing only one single objectivewhile treating all other objectives
as extra constraints, may avoid both the subjectiveness of AOF methods
and the loss of Pareto optimality in PCR methods.

Calculating complete Pareto front is a relatively less discussed
topic in the study of MOOPs. Theoretically, some nonlinear AOF
based methods can prove that for any Pareto point on the Pareto
front a set of AOF coefficients definitely exists which can lead to
that Pareto point. However, the difficulty is that there lacks a
practicable method to find those sets of coefficients that will help
to identify the complete Pareto front [28]. For PCR methods,
guaranteeing the complete Pareto front is theoretically a mission
impossible, largely because of the stochastic nature of employed
population-based approaches [15]. COF methods, given well posed
objective function constraints, may theoretically guarantee the
finding of the complete Pareto front but like AOF methods, the
practicality of finding proper constraints is a big issue [30].
Therefore, most existing methods can only produce an incomplete
or approximate Pareto front [10,15,26–30]. In particular, as pointed
out in [26], very few results are available on the quality of the
approximation of the Pareto front for discrete MOOPs.

We have recently proposed a deterministic method which can,
theoretically and practically, guarantee the finding of complete Pareto
front for discrete MOOPs [31]. Some theoretical conditions and a
general methodology were reported in [31], and a case study on a
multi-objective route optimization problem (ROP) was used to prove
the correctness and practicability. In this paper, we will particularly
apply the method of [31] to the MONPD. Actually, there is a
substantial body of literature on optimizing investment portfolios
[6,32–38] similar to MONPD, but little work has been reported to
calculate complete Pareto front of such investment portfolio optimi-
zation problems. To calculate the complete Pareto front for MONPD,
firstly, we will improve the theoretical conditions and the methodol-
ogy reported in [31]. The most challenging part in the method of [31]
is to design an algorithm that is capable of finding the global kth best
solution for any given k in terms of a given single objective. Designing
such an algorithm is largely problem-dependent, and is often difficult
because most optimization algorithms only calculate the global 1st
best solution. MONPD is quite different from the ROP in [31]. For
example, in the ROP, every objective needs to be minimized; however,
in MONPD, the profit expectation needs to be maximized although
the loss expectation is to be minimized. Therefore, MONPD demands
a new algorithm to calculate the general kth best (rather than only the
kth smallest) single-objective solution. By successfully developing a
new ripple-spreading algorithm for MONPD, this paper will further
prove the practicability and the potential of the methodology of
resolving discrete MOOPs by calculating complete Pareto front.

The remainder of this paper is organized as following. Section 2
gives some theoretical results for calculating complete Pareto front for

discrete MOOPs. Section 3 describes mathematically the details of
MONPD. Section 4 reports a ripple-spreading algorithm for MONPD.
Simulation results are given in Section 5, and the paper ends with
some conclusions and discussions on future work in Section 6.

2. Theoretical results for calculating the complete Pareto front

We have recently reported some theoretical results and a
general methodology to guarantee, theoretically and practicably,
the finding of the complete Pareto front for discrete MOOPs [31].
The work in [31] is the theoretical foundation of this application
paper. In this section, we will introduce some improvements to the
work of [31], in order to better apply to MONPD later.

First of all, we need a general mathematical formulation of
discrete MOOPs as following:

min
x

½g1ðxÞ; g2ðxÞ;…; gNObj
ðxÞ�T ; ð1Þ

subject to

hIðxÞr0; ð2Þ

hEðxÞ ¼ 0; ð3Þ

xAΩX ; ð4Þ
where gi is the ith objective function of the totalNObj objective functions,
hI and hE are the inequality and equality constraints, respectively, x is the
vector of optimization or decision variables belonging to the set of ΩX,
and x is of discrete value. A Pareto-optimal solution xn to the above
problem is so that there exists no x that makes

giðxÞrgiðxnÞ; for all i¼ 1;…;NObj; ð5Þ

gjðxÞogjðxnÞ; for at least one jA ½1;…;NObj�: ð6Þ

The projection of such an xn in the objective space is called a
Pareto point. The above problem usually has a set of Pareto opti-
mal solutions, whose projections compose the complete Pareto front.

2.1. Theoretical conditions

According to the theoretical results in [31], we have the
following statements for discrete MOOPs.

Lemma 1. Suppose we sort all discrete xAΩX according to a certain
objective function gj(x), and xj,i has the ith smallest gj. For a given
constant c, if there exists an index k that satisfies

gjðxj;kÞrcogjðxj;kþ1Þ; ð7Þ

then the number of Pareto points whose gjrc is no more than k, and
all the associated x values are included in the set [xj,1,…,xj,k].

Lemma 2. Suppose we have a constant vector ½c1;…; cNObj
�, the

element cj is for objective function gj, and after sorting all discrete
xAΩX according to each objective function gj, we have kj satisfying
Condition (7). If for any j¼1,…,NObj,

giðxj;kj Þrgiðxi;ki Þ; for all ia j; ð8Þ

then the total number of Pareto points is no more than

NPPr ∑
NObj

j ¼ 1
kj; ð9Þ

and all associated x values are included in the union set

ΩU1 ¼ [NObj

j ¼ 1½xj;1; :::; xj;kj �: ð10Þ
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