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a b s t r a c t

Stochastic adaptive optimal control of robotic manipulators with a passive joint which has neither an
actuator nor a brake is investigated. Firstly, the under-actuated system is decomposed into two
subsystems with the first n�1 joints subsystem fully actuated while the second one unactuated.
Secondly, a reference model for the first subsystem is derived by using the Linear Quadratic Regulator
(LQR) optimization approach which guarantees the motion tracking and achieves the minimized moving
accelerations. Instead of leaving the unactuated joint dynamics uncontrolled, the reference trajectory
for the last joint is designed to indirectly affect the movements such that the desired trajectory can be
achieved. Radial Basis Function neural networks (RBFNNs) have been employed to design the adaptive
reference control and to construct a reference trajectory generator for the last joint. The stability and the
optimal tracking performance in finite time have been rigorously established by theoretic analysis.
Simulation studies show the effectiveness of the proposed control approach.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Under-actuated robots have received considerable research
attention in the last two decades (see, e.g., [1–5,7–20]). In contrast
to conventional robot for which each joint has one actuator and
its degree of freedom equals the number of actuators, an under-
actuated robot has passive joints equipped with no actuators.
Though the passive joints are not actuated but they can be
controlled by using the dynamic coupling with the active joints,
i.e., these passive joints can be indirectly driven by other active
joints [3]. The zero torque at the passive joints results in a second-
order nonholonomic constraint. In robotics, nonholonomic con-
straints formulated as nonintegrable differential equations con-
taining time-derivatives of generalized coordinates (velocity,
acceleration etc.) are mainly studied (see, e.g., [8–17]).

One of the most interesting consequences of nonholonomy in
robotic systems is that it allows one to control the configuration of

the whole mechanismwith a reduced number of inputs [19]. These
mechanisms arise in a number of situations, ranging from non-
prehensile manipulation [21] to robot acrobatics [22], from legged
locomotion [23] to surgical robotics [24], from free-floating robots
[25] to manipulators with flexibility concentrated at the joints [26]
or distributed along the links [27]. Another particularly interesting
example is that of manipulators to be operated in spite of actuator
failure [28]. In this latter case, in order to preserve active operation
of the system, one needs to take into account the arising non-
holonomic constraints at both the trajectory planning and the
control level.

To some extent, the under-actuation structure is made possible for
the robots to reduce the weight, energy consumption, and cost of
manipulators. Application to the tasks involving an impact, e.g., hitting
or hammering an object, will be useful since the impact causes no
damage to the joint actuators. It can also contribute to fault tolerance
of fully actuated manipulators when some of the joint actuators fail.
However, the price of this benefit is that planning and controlling
trajectories becomemore difficult than the holonomic cases [20]. Since
these robots usually have nonholonomic second-order constraints, the
control problems are challenging (see e.g., [1–5,7]). Therefore, it is
necessary to combine the limited number of inputs skillfully in order
to control all the coordinates. So how to efficiently control these kinds
of nonholonomic systems becomes an interesting research area.
However, most of these existing results applied the approach of partial
feedback linearization or only considered the deterministic cases. As
well as we know, the disadvantage of feedback linearization is that
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input constraints are not considered explicitly as part of the controller
design [49]. At the same time, the stochastic noises exist almost
everywhere (see, e.g., [42–45]). Sometimes engineers and researchers
just ignored them for the simplification of the research when these
disturbances are ignorable compared to the research problem.

Motivated by the above discussion, in this paper we consider the
stochastic control problem for an n-joints under-actuated system
with a passive last joint. It is worth noting that there is a critical
problem in the uncertainties of the system dynamics, i.e., either
external unpredictable disturbances or internal uncertain dynamics.
From this point of view, the development of parameter estimation
based adaptive control or function approximation based NN control
becomes an important issue (see, e.g., [4,5,29–37]). It is worth to
mention that novel adaptive controller that compensates for both
parametric and nonparametric uncertainties has been designed in
[6]. In [4] and [5], NN has been effectively employed for control
design of underactuated wheeled robot. In this paper, we use NN to
generate both the adaptive model reference controller and a
reference trajectory generator. The main contributions of this paper
lie on the following:

(i) A reference model for the first n�1 joints subsystems of the
n-joints under-actuated system is derived by using the LQR
optimization approach which guarantees the motion tracking
and achieves the minimized moving accelerations.

(ii) Instead of leaving the unactuated joint dynamics uncon-
trolled, the reference trajectory for the last joint is designed
to indirectly affect the movements such that the desired
trajectory can be achieved.

(iii) RBFNNs have been employed to design the adaptive reference
control in order to make the controlled dynamics to match
the reference model dynamics in finite time. At the same time,
RBFNNs have been used to construct a reference trajectory
generator for the last joint as well.

The rest of this paper is organized as follows. In Section 2,
preliminary knowledge of RBFNN approximation, LQR optimiza-
tion and stochastic stability and stochastic finite-time attractive-
ness is presented. In Section 3, the under-actuated system is
decomposed into two subsystems with the first n�1 joints
subsystem fully actuated while the last joint subsystem unactu-
ated. In Section 4, a reference model for the first n�1 joints
subsystems is derived by using the Linear Quadratic Regulator
(LQR) optimization approach which guarantees the motion track-
ing and achieves the minimized moving accelerations. A reference
trajectory generator using RBFNN for the last joint is designed in
Section 5 such that the forward velocity is indirectly manipulated
to follow its desired trajectory. In Section 6, simulation studies are
carried out to verify the effectiveness of the proposed method.
Concluding remarks are given in Section 7.

2. Preliminaries

2.1. RBFNN approximation

In this paper, an unknown smooth nonlinear function ϕðzÞ :
Rm-R will be approximated on a compact set D by the following
RBF neural network [40]

ϕðzÞ ¼WnTSðzÞþδðzÞ; ð1Þ

where zAD� Rm is the input vector of dimension m; δðzÞ denotes
the NN inherent approximation error; SðzÞ ¼ ½s1ðzÞ; …; slðzÞ�T :

D-Rl is a known smooth vector function with the NN node
number l41; Basis function siðzÞð1r ir lÞ is chosen as the
commonly used Gaussian function with the form siðzÞ ¼ exp
½�ðz�μiÞT ðz�μiÞ=η2i �, where μi ¼ ½μi1;…;μim�T AD is the center of
the receptive field and ηi40 is the width of the Gaussian function;
the ideal weight vector Wn ¼ ½Wn

1;…;Wn

l �T is defined as the
optimal value of Ŵ that could minimize the approximation error
δðzÞ for all zAD, i.e.,

Wn ¼defarg min
Ŵ ARl

sup
zAD

jϕðzÞ�Ŵ
T
SðzÞj

� �
; ð2Þ

In many previous published works, the approximation error δðzÞ is
assumed to be bounded by a fixed constant, i.e.,

Assumption 1. There exists an unknown positive constant δ such
that

jδðzÞjrϵ: ð3Þ

Remark 1. From the universal approximation results for neural
networks [38], it is known that the constant ϵ can be made
arbitrarily small by increasing the NN nodes number l. Also it
should be noticed that the optimal weight Wn is an unknown
artificial value. In practice, we use estimated weight Ŵ instead of
Wn to approximate a continuous nonlinear function, where Ŵ is
derived from a learning law [4].

Lemma 1 (Munkres [39]). Consider a Cr function f : Rkþn-Rn with
f ða; bÞ ¼ 0½n� and rankðDf ða; bÞÞ ¼ n where Df ða; bÞ ¼ ð∂f ðx; yÞ=
∂yÞjðx;yÞ ¼ ða;bÞARn�n. Then, there exist a neighborhood A of a in Rk

and a unique Cr function g : A-Rn such that gðaÞ ¼ b and f ðx; gðxÞÞ ¼
0½n�; 8xAA.

Remark 2. This lemma is called the implicit function theorem,
which will be used to warrant the existence of the implicit
function fn later (refer to Section 5).

To easily approximate a nonlinear matrix function with each
element a unknown scalar function, we use the following
block matrix operators 〈T〉 and 〈 � 〉 as introduced in [4] and [40].

Nomenclature

q; qa; qb the coordinate vectors of under-actuated robot,
subsystems Σa and Σb, respectively

qam; qbm the responses of given reference model of subsystems
Σa and Σb, respectively

qad; qbd the desired responses of subsystems Σa and Σb,
respectively

ea; eb the tracking error of subsystems Σa and Σb

M;G; C the inertia, damper matrix and the Coriolis and
centrifugal torque

Wn; Ŵ ; ~W the NN ideal, estimated and estimation error weight
vectors, respectively

Sð�Þ NN Basis function vector
τa the torque of the actuated joints
w an n-dimensional independent standard Wiener

process
L the infinitesimal generator
ðBÞi the ith column of matrix B
0½m�, 0½m;n� zero column vector of dimension m, and zero matrix

of m rows and n columns, respectively
J � J vector's and matrix's L2-norm
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