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a b s t r a c t

The tracking problem for a class of dynamic nonholonomic systems with uncertainties is considered.
First, under the assumption that the dynamics of the nonholonomic systems are exactly known without
uncertainties, a simpler model-based controller is proposed by means of cascade design approach, in
which the virtual velocity controller is linear, and the actual torque controller is derived by conventional
computed-torque law. Then, to deal with uncertainties, a recurrent neural network control system is
developed without requiring explicit knowledge of the system dynamics. The closed-loop stability
analysis is presented based on a technical lemma developed for nonlinear cascaded systems with
vanishing disturbances. Comparing with the existing results, the resulting control system has a simpler
structure, and can deal with parametric uncertainties as well as non-parametric uncertainties, yet
guarantees asymptotic stability of the tracking error dynamics. Simulation results for a wheeled mobile
robot verify the good tracking performance and robustness of the proposed control system.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, much attention has been devoted to the
problem of controlling nonlinear mechanical systems with non-
holonomic constraints [1,2]. Depending on whether the nonholo-
nomic system is presented by a kinematic or dynamic model, the
control problem can be classified as either kinematic control or
dynamic control. Due to Brockett's theorem [3], it is well known
that a nonholonomic system cannot be asymptotically stabilized to
an equilibrium point via smooth or even continuous pure-
feedback laws. However, several approaches have been proposed
for tackling the stabilization problem at kinematic level [4–8] or
dynamic level [9–11].

The tracking problem has also received a great deal of attention
because of its practical importance. Several authors have studied
the kinematic tracking problem in which velocity acts as the
control input. In [12], a linearization-based tracking control was
proposed for nonholonomic systems under the assumption that
the linearized system is uniformly completely controllable along
the desired trajectory. In [13,14], based on dynamic feedback

linearization, controllers with structural singularity were proposed
for the tracking problem of mobile robots. However, these con-
trollers only solve the local tracking problem. There are mainly
two methods to deal with the global tracking problem: back-
stepping method [15,16] and cascade design approach [17,18]. The
main difference of these two methods lies in the way of dealing
with the coupling terms between subsystems. Unlike the back-
stepping method, the coupling terms are neglected and the control
law is chosen without canceling the coupling terms in cascade
design to reduce complexity of the controllers.

In practice, however, it is more realistic to consider the tracking
problem at dynamic level, where the torque and force are taken as
the control inputs. The dynamics of the systems usually cannot be
neglected if high performance of the control systems is required.
With the assumption of known dynamics, model-based controls
can be obtained for the dynamic nonholonomic systems using
backstepping [19]. However, there often exist uncertainties in the
dynamics of the nonholonomic systems inevitably, such as
unmolded dynamics, parameter perturbations and load variation.
To confront this, some adaptive controls and robust controls have
been developed. In [20,21], adaptive control techniques were
employed to solve the tracking problem of nonholonomic systems
with unknown inertia parameters. However, the major problem of
the adaptive control approaches is that certain functions must be
assumed “linearity in the parameters”, and tedious preliminary
computation of “regression matrices” is needed [22]. In [23], a
robust adaptive controller was designed for nonholonomic
mechanical systems with model uncertainties. In [11,24], robust
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adaptive controllers were proposed for dynamic nonholonomic
systems with parametric and non-parametric uncertainties, in
which adaptive control techniques were used to compensate for
the parametric uncertainties and sliding mode control was used to
suppress the bounded disturbances. In [25], robust control strate-
gies were presented systematically for both holonomic mechanical
systems and a large class of nonholonomic systems in the presence
of uncertainties and disturbances. Li et al. [26–28] have studied
the motion/force control for a mobile manipulator under both
holonomic and nonholonomic constraints, and some adaptive
robust control strategies have been proposed. In order to cope
with highly uncertain nonlinear systems, as an alternative, the
applications of neural networks (NNs) were also studied for the
control of nonholonomic robotic systems. A multilayer perception
network-based controller was suggested by Fierro and Lewis [29]
to deal with parametric or non-parametric uncertainties for a
nonholonomic mobile robot without any prior knowledge of the
uncertainties. Other feedforword neural networks, like radial basis
function (RBF) neural network [30] and wavelet network [31,32],
were also adopted for the robust control of mobile manipulators
and mobile robots.

In the past decade, a great progress has been achieved in the
study of using neural networks to control uncertain nonlinear
systems. Extensive works demonstrate that adaptive neural con-
trol is particularly suitable for controlling highly uncertain, non-
linear, and complex systems [33–35]. In these neuro-adaptive
control schemes, the neural network is used to compensate the
effects of nonlinearity and system uncertainties, so the stability,
convergence and robustness of the control system can be
improved [36]. According to the structure, the neural networks
can be mainly classified as feedforward neural networks (FNNs)
and recurrent neural networks (RNNs). It is well known that FNN
is capable of approximating arbitrary continuous function closely.
However, FNN is a static mapping and unable to represent a
dynamic mapping without the aid of tapped delays [37]. On the
other hand, he RNNs, which comprise both feedforward and
feedback connections, have superior capabilities than the FNNs.
Since the RNN has a feedback loop, it can capture the past
information of the network and adapt rapidly to sudden changes
of the control environment [38]. The RNNs have the ability to deal
with time-varying input or output though their own natural
temporal operation [39]. For this ability, the structure of the neural
network is simplified. Due to its dynamic characteristic and
relative simple structure, the RNN is a useful tool in real-time
application [40].

In this paper, the tracking problem is considered for a class of
dynamic nonholonomic systems in which the nonholonomic
kinematic subsystem is assumed to be capable of being trans-
formed into the chained form and the dynamic subsystem is
completely unknown. First, a simpler model-based controller is
proposed for dynamic nonholonomic systems without uncertain-
ties, in which the virtual velocity controller is linear, and the actual
torque controller is derived by conventional computed-torque law.
The stability of the closed-loop systems is presented based on the
results on nonlinear cascaded systems with vanishing distur-
bances. To deal with disturbances and unstructured unmodeled
dynamics in the nonholomonic system, a robust control system is
then developed based on recurrent neural networks. On-line
weights tuning algorithms that do not require off-line learning
yet guaranty asymptotic stability of the tracking error dynamics
are utilized. Simulation results for a wheeled mobile robot are
provided to demonstrate the effectiveness of the proposed control
method.

The remainder of this paper is organized as follows. Problem is
formulated in Section 2. In Section 3, a model-based controller is
presented and the closed-loop stability analysis is given based on a

technical lemma developed for nonlinear cascaded systems with
vanishing disturbances. A RNN-based control system is developed
in Section 4. In Section 5, the effectiveness of the proposed
approach is verified by simulation on a wheeled mobile robot.
Section 6 concludes the paper.

2. Problem formulation

In general, a mechanical system with nonholonomic con-
straints can be described as

JðqÞ _q ¼ 0 ð1Þ

MðqÞ €qþCðq; _qÞ _qþGðqÞþdðtÞ ¼ JT ðqÞλþBðqÞτ ð2Þ
where qARn denotes the generalized coordinates, MðqÞARn�n is
the symmetric, positive definite inertia matrix, Cðq; _qÞARn�n is the
centripetal and coriolis matrix, GðqÞARn is the gravitational vector,
dðtÞARn denotes unknown disturbances including unstructured
unmodeled dynamics, JðqÞARm�n is the constrained matrix, λARm

is the associated Lagrange multipliers which expresses the contact
force, τARr is the vector of control input, BðqÞARn�r is the input
transformation matrix, and is assumed to be known because it is a
function of fixed geometry of the system. The dynamic system
(2) has the following properties.

Property 1. MðqÞ;Cðq; _qÞ;GðqÞ and d(t) are bounded.

Property 2. _M�2C is a skew-symmetric matrix, i.e. xT ð _M�2CÞ
x¼ 0; 8xa0.

Let SðqÞARn�ðn�mÞ be a full rank matrix formed by a set of
smooth and linearly independent vector fields spanning the null
space of J(q), i.e.

ST ðqÞJT ðqÞ ¼ 0 ð3Þ
According to (2) and (3), there always exists an auxiliary vector of
independent generalized velocities vARn�m, that make the system
(1) and (2) be transformed in to a more appropriate representation
for control purposes:

_q ¼ SðqÞv ð4Þ

M1ðqÞ _vþC1ðq; _qÞvþG1ðqÞþd1ðtÞ ¼ B1ðqÞτ ð5Þ
where M1ðqÞ ¼ STMðqÞS, C1ðq; _qÞ ¼ ST ðMðqÞ _SþCðq; _qÞSÞ, G1ðqÞ ¼
STGðqÞ, B1ðqÞ ¼ STBðqÞ, d1ðtÞ ¼ STdðtÞ. It should be noted that the
reduced system consists of a reduced state dynamics (5) and the
so-called kinematic model (4) of nonholonomic systems in the
literature. It is assumed that B1ðqÞARðn�mÞ�r is a full rank matrix
and rZn�m to completely actuate the nonholonomic system.

For ease of controller design, the existing results for the control
of nonholonomic canonical forms in the literature are exploited.
We assume that there exists a coordinate transformation x¼ T1ðqÞ
and a state feedback v¼ T2ðqÞu, so that the kinematic model of the
nonholonomic system given in Eq. (4) can be converted to the
chained form. Since most of non-holonomic robotic systems (such
as wheeled mobile robots) often include two pseudo-velocities, we
only consider two independent generalized velocities ðn�m¼ 2Þ
case for the sake of simplicity; however, the results can be
extended to more general case. That is, the nonholonomic chained
system considered in this paper is the 2-input, single-chain,
single-generator chained form

_x1 ¼ u1

_xi ¼ u1xiþ1 ð2r irn�1Þ
_xn ¼ u2 ð6Þ
The necessary and sufficient condition for the existence of the
transformation can be founded in [41–43]. Based on the above
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