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a b s t r a c t

This paper develops a robust adaptive backstepping control (RABC) algorithm for a class of nonlinear systems
using a recurrent wavelet neural network (RWNN). This RABC comprises an RWNN controller and a robust
controller. The RWNN controller is the main tracking controller utilized to mimic an ideal backstepping
control law; and the parameters of RWNN are tuned on-line by adaptation laws derived from the Lyapunov
stability theorem and gradient descent method. The robust controller is employed to suppress the influence
of approximation error between the RWNN controller and the ideal backstepping control law, so that robust
tracking performance of the system can be achieved. Finally, the proposed control method is applied to
resolving the marine course-changing and gyros synchronization control problems. Simulation results verify
that the proposed control algorithm can achieve favorable tracking performance of these nonlinear systems.
Comparison with a wavelet adaptive backstepping control (WABC) and a robust adaptive backstepping
control (RABC) partially tuned with adaptation laws demonstrates that the proposed RABC fully tuned with
adaptation laws can achieve better control performance than the other two control methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, neural networks (NNs) have been widely used
for identification and control of dynamic systems [1–8]. Many
studies have suggested NNs as powerful building blocks for a wide
class of complex nonlinear system control strategies when no
complete model information is available or even when a controlled
plant is considered as a “black box”. The most useful property of
NNs is their approximation ability, in that they can approximate any
function with an arbitrary degree of accuracy. Moreover, according
to the structure, NNs can be mainly classified as feed-forward
neural networks (FNNs) [1–5] and recurrent neural networks
(RNNs) [6–8]. As known, FNNs represent a static mapping. Without
the aid of tapped delays, FNNs are unable to represent a dynamic
mapping. Moreover, the weight update of FNNs does not utilize
internal network information and the function approximation is
sensitive to the training data. As to RNNs, of particular interest is
their ability to deal with time-varying inputs or outputs through
their own natural temporal operation [6]. Thus, RNNs represent a

dynamic mapping and demonstrates good control performance in
the presence of un-modeled dynamics [7,8]. The basic concepts in
neural network-based feedback control methods are to provide
online learning algorithms that do not require preliminary offline
tuning. Some of these online learning algorithms are developed
from the back-propagation learning algorithm [1,4,6] and some are
derived from the Lyapunov stability theorem [2,7,8].

In recent years, a number of studies have been conducted on the
applications of wavelet neural networks (WNNs), which combine
the learning ability of NNs and the capability of wavelet decom-
position [9–15]. Unlike the sigmoidal functions used in conventional
neural networks, wavelet functions are spatially localized, so that
the learning capability of WNN is more efficient than the conven-
tional sigmoidal function neural network for system identification
and control. The training algorithms for WNN typically converge in
a smaller number of iterations than those for conventional NNs [9].
Thus, WNN has been proved to be better than the Gaussian-type
neural network in that the structure can provide more potential to
enrich the mapping relationship between inputs and outputs [10].
There has been considerable interest in exploring the applications
of WNN to dealing with nonlinearity and uncertainties of control
systems [11–14]. In [15], a simple WNN structure has been devel-
oped and is used as an identifier to approximate the dynamics of an
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unknown system. With this approach, its applications are limited to
the control systems with unity input gain. Nevertheless, the major
drawback of the aforementioned WNNs is that their application
domain is limited to static problem due to its feed-forward network
structures [9–15]. Compared with [15], this study develops a more
general recurrent WNN (RWNN) for use as the main controller to
track desired trajectory; and its applications can be a more general
nonlinear control system.

In the past decade, many researchers have been devoted to the
backstepping control for the uncertain nonlinear systems [16–20].
This control technique can be effectively employed to linearize a
nonlinear system in the presence of uncertainties, and it is a
systematic and recursive design methodology. The basic idea of
backstepping control design method is to select recursively some
appropriate functions of state variables as pseudo-control inputs for
subsystems of lower dimension in the overall system. Each back-
stepping stage results in a new pseudo-control design, expressed in
terms of the pseudo-control design from preceding design stages.
The procedure terminates a feedback design for the true control
input, which achieves the original design objective by virtue of a
final Lyapunov function formed by summing the Lyapunov func-
tions associated with each individual design stage [18].

Robust control techniques have been used when the system is
subject to bounded uncertainty with unknown upper bound.
According to this observation, some robust adaptive fuzzy control
approaches have been proposed to attenuate the effects of
approximation error to a desired prescribed level [21,22]. This
proves that the robust control schemes are suitable for solving the
approximation errors of WNNs.

Over and above these motivations, a RWNN control system is
proposed in this study, involving dynamic elements in the form of
feedback connections that are used as internal memories, to
achieve robust adaptive backstepping control. This control system
comprises two parts: a RWNN controller utilized as the main
tracking controller to mimic an ideal backstepping control law,
and a robust controller employed to suppress the influence of
approximation error between the RWNN controller and the ideal
backstepping control law. The adaptive laws of the control system
are derived from the Lyapunov stability theorem and gradient
descent method. Thus, the stability of the system can be guaran-
teed. In this control system design, knowledge of the precision
dynamic models of the controlled plant is not required. Finally, the

proposed RABC is applied to resolving the marine course-changing
and gyros synchronization control problems to demonstrate its
effectiveness.

The remainder of this study is organized as follows. System
description and ideal backstepping control law are presented in
Section 2. Section 3 describes the architecture of RWNN. Section 4
introduces the RABC scheme. In Section 5, simulation results for
two nonlinear systems are presented to verify the effectiveness of
the proposed control method. Finally, Section 6 offers concluding
remarks.

2. System description and ideal backstepping control law

Consider a class of second-order nonlinear systems expressed
in the following form:
€xðtÞ ¼ αðxðtÞ; _xðtÞÞþβðxðtÞ; _xðtÞÞuðtÞþdðtÞ ð1Þ

where αðU Þ and βðU Þ are unknown but bounded real continuous
functions, uðtÞAℜ is the control input; dðtÞAℜ is an unknown
external disturbance, and xðtÞ ¼ ½xðtÞ; _xðtÞ�T Aℜ2 is a state vector of
the system assumed to be available for measurement. For the
system to be controllable, it is required that βðxðtÞÞa0 for all x in a
certain controllability region UcAℜ2. Since βðxðtÞÞ is continuous,
without loss of generality, it is assumed that βðxðtÞÞ40 for all
xAUc .

In case that all the parameters of the system are well known,
the nominal model of the nonlinear systems (1) can be repre-
sented as

€xðtÞ ¼ α0ðxðtÞÞþβ0uðtÞ ð2Þ

where α0ðxðtÞÞ is the nominal value of αðxðtÞÞ and β0is a nominal
constant of βðxðtÞÞ: If external disturbance and uncertainties exist,
the nonlinear systems (1) can be reformulated as

€xðtÞ ¼ ½α0ðxðtÞÞþΔαðxðtÞÞ�þ½β0þΔβðxðtÞÞ�uðtÞþdðtÞ
¼ α0ðxðtÞÞþβ0uðtÞþεðtÞ ð3Þ

where ΔαðxðtÞÞ and ΔβðxðtÞÞ denote the uncertainties; εðtÞ is called
the lumped uncertainty, defined as εðtÞ �ΔαðxðtÞÞþΔβðxðtÞÞuðtÞ
þdðtÞ:

Nomenclature

dðtÞ Unknown external disturbance
e1ðtÞ; e2ðtÞ Tracking error
H1 Tracking performance
L1ðtÞ; L2ðtÞ Lyapunov functions
mij Translation factor
Ni Number of the input variables
Np Total number of the node in the product layer
rij Recurrent weight
uðtÞ Control input of the system
un

IBCðtÞ Ideal backstepping control law
ûRWNN RWNN controller
uRC Robust controller
~uðtÞ Estimation error
νij Dilation factor
w;m;v,r Parameters of the connection weights and mother

wavelets
wn Optimal constant parameter of w
x; _x; €x Joint position, velocity and acceleration
xd; _xd; €xd Desired joint position, velocity and acceleration

yð2Þij Output of mother wavelet node
yð4Þo Output of RWNN
yð1Þi The i-th input to the node of input layer
yð2Þi The i-th input to the node of mother wavelet layer
zð3Þi The i-th input to the node of product layer
zð4Þj The j-th input to the node of output layer
tm Time constant (s)
αðU Þ Unknown but bounded real continuous function
α0 Nominal value of αðU Þ
βðU Þ Unknown but bounded real continuous function
β0 Nominal value of βðU Þ
εðtÞ Lumped uncertainty
ψðtÞ Ship heading angle
ρ Prescribed attenuation constant
ϑ Approximation error
ϕðξÞ Gaussian function
ϕTij Output through delay sampling time T
sðtÞ; _sðtÞ Stabilizing functions
λ1,λ2 Positive constants
κ1,κ2,κ3,κ4 Learning-rates
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