
Manifold optimal experimental design via dependence
maximization for active learning

Ping Li a,n, Jiajun Bu b, Chun Chen b, Deng Cai b

a School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
b College of Computer Science, Zhejiang University, Hangzhou 310027, China

a r t i c l e i n f o

Article history:
Received 29 May 2013
Received in revised form
7 November 2013
Accepted 6 April 2014
Communicated by Qingshan Liu
Available online 17 May 2014

Keywords:
Optimal experimental design
Dependence maximization
Manifold learning
Hilbert–Schmidt independence criterion
Image retrieval

a b s t r a c t

Naturally occurring data have been growing in a huge volume size, which poses a big challenge to give
them high-quality labels to learn a good model. Therefore, it is critical to only select the most
informative data points for labeling, which is cast into the framework of active learning. We study this
problem in a regression model from optimal experimental design (OED). To this end, several OED based
methods have been developed, but the relations between the data points and their predictions are still
not fully explored. Inspired by this, we employ the Hilbert–Schmidt independence criterion (HSIC) to
maximize the dependence between the samples and their estimations in a global view. Thus, we present
a novel active learning method named manifold optimal experimental design via dependence maximization
(MODM). Specifically, those points having maximum dependence with their predictions are expected to
be included for labeling. Besides, it utilizes the graph Laplacian to preserve the locally geometrical
structure of the data. In this way, the most informative data points can be better selected. Moreover,
we adopt a sequential strategy to optimize the objective function. The effectiveness of the proposed
algorithm has been experimentally verified in content-based image retrieval.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

During the past decades, hundreds of thousands of data have
emerged in an extensive range of fields and have been applied to
numerous real-world tasks. Nevertheless, the majority of them has
no access to labels, which require heavy loads and costly expert
knowledge. In this regard, it becomes a crucial demand to select a
much smaller subset of points characterizing the most information
from the data collection. In the machine learning community, it is
treated as an active learning problem [7,23], which has received
lots of interests from both academia and industry. For example, the
merits of active learning in multimedia annotation, image retrieval
[28] and video indexing [31] have been empirically demonstrated.

To this end, the popular principles adopted in active learning
include uncertainty sampling, query by committee, error reduction
and variance reduction. Typically, the uncertainty sampling rule has
been applied to support vector machine (SVM) [27], nearest neighbor
classifier [19], etc. With this method, the most uncertain samples are
queried for labeling. The variance reduction criterion originates from
optimal experimental design (OED) [1], which refers to the problem
of selecting samples to label in statistics. In the experimental design,
the sample and its label are respectively seen as experiment and

measurement. OED aims to minimize variances of a parameterized
model, e.g., minimizing the variance of the model parameters leads to
A-, D- and E-optimal design while minimizing the variance of the
estimated value leads to I- and G-optimal design [1]. However, these
methods belong to the supervised paradigm, which does not con-
sider the unmeasured (i.e., unlabeled) samples. To overcome this
drawback, some methods utilize both measured and unmeasured
samples to actively select the most informative points, e.g., Trans-
ductive Experimental Design (TED) [30] evaluates the average pre-
diction variance on the pre-given unseen data based on I-optimal
design. Nevertheless, TED does not consider the local manifold
structure of the data space, which is of vital importance in active
learning, since naturally occurring data often reside on a lower
dimensional sub-manifold of the ambient Euclidean space [3,16,18].
To handle this deficit, Laplacian regularized D-optimal design
(LapRDD) [13] was proposed, where the loss function is defined on
both labeled and unlabeled points with an imposed locality preser-
ving regularizer, which has been adopted in several learning meth-
ods to improve the performance [15,17]. Overall, the above methods
do not fully consider the correlation between the unlabeled data and
their estimated predictions, i.e., existing models only well respect the
labeled data whereas the dependence between the unlabeled data
and their predictions has not been explored in the context of OED.

Recently, the Hilbert–Schmidt independence criterion (HSIC) [11],
which measures the dependence between two random variables,
has been successfully applied to many real-world applications,
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such as feature selection [24], dimensionality reduction [34],
classification [2] and clustering [25]. These methods take advan-
tage of HSIC to maximize the dependence between the input data
(e.g., the feature) and the output (e.g., the label), leading to the
improved performance. However, they do not consider the local
geometry that reflects the intrinsic structure of the data space,
which is able to refine the learning performance. Essentially,
HSIC is an empirical estimate of the Hilbert–Schmidt norm of
the cross-covariance operator and has several advantages. First of
all, it has a simple formulation as the trace of the product of Gram
matrices. Besides, its rate of converging to the population estimate
is conversely proportional to the square root of the number
of samples. In addition, if the sample size is large, any existing
dependence between the random variables is guaranteed to be
revealed with a high probability [11]. Naturally, these merits can
be sufficiently employed in OED to better model the correlation
between unlabeled data and their estimated predictions. But such
a kind of the correlation cannot be revealed by the existing
LapRDD, which uses the linear regression to model the relation
only between the labeled data and their labels.

Motivated by this, we adopt HSIC in Laplacian regularized OED
to improve the performance of active learning. In this way, we
propose a novel active learning method named manifold optimal
experimental design via dependence maximization (MODM). The
central idea is to take advantage of HSIC to measure the depen-
dence between the input data and their estimated outputs.
Particularly, in virtue of the regression model, we maximize the
inherent dependence between the feature vectors and the corre-
sponding predictions under the OED framework. In some sense,
the dependence maximization reflects the relation between the
inputs and the outputs globally. Furthermore, since MODM is
developed upon LapRDD, thus inheriting the locality preserving
property by the graph Laplacian. On the whole, a significant merit
of MODM is that both the dependence maximization and the
locally geometrical structure of the data are well respected in a
unified model. This way, the most informative data points can be
better selected for labeling, thus yielding an improved model. To
investigate the performance of MODM, we apply it to a natural
application of active learning, i.e., relevance feedback in image
retrieval [22,35]. Empirical studies have demonstrated the super-
iority of the proposed method compared to other alternatives.

It is worthwhile to highlight the main contributions of this
work as follows:

� A novel active learning named MODM is presented by incor-
porating HSIC regularizer to manifold optimal experimental
design, which enables maximizing the dependence between
the unlabeled samples and their estimations. Thus, not only the
relations between labeled samples and their labels are con-
sidered by a linear regression model, but also the dependence
between unlabeled samples and their estimations, in addition
to the manifold structure of the data space, is together
respected for OED in a unified framework.

� Detailed derivations of the proposed method including a
sequential optimization method are given with the time com-
plexity analysis. Moreover, we generalize it to the nonlinear
situation, i.e., in Reproducing Kernel Hilbert Spaces (RKHS),
thus being performed for linearly nonseparable data points.

� We have applied our method to content-based image retrieval
(CBIR) on two real-world databases to investigate its perfor-
mance. Experimental results have demonstrated the super-
iority of the proposed approach in terms of several evaluation
metrics.

The remainder of this paper is organized as follows. We briefly
review the related works in Section 2. Section 3 introduces the

proposed manifold optimal experimental design via a dependence
maximization algorithm as well as its nonlinear extension described
in Section 4. Section 5 reports comprehensively the experimental
results and finally we reach a conclusion in Section 6.

2. Related works

In this work, we focus on active learning, which is a hot topic in
the machine learning community [8,12,23,32]. The relationship
between active learning and semi-supervised learning [5,37] is
just like one coin has two sides. They share the goal of relieving
the boring tasks of labeling the unlabeled data. Here, we discuss
active learning under the framework of OED. The problem setting
can be stated as follows. Given a data collection with n samples in
Rd, i.e., X ¼ fx1;…; xng, we aim to find a subset Z ¼ fz1;…; zkg �X
which covers the most informative points. The selected points are
expected to improve the classifier the most if they are labeled for
training the model.

Recently, OED has attracted considerable interests due to its
solid theory foundation and practical successes [1,4,31]. For
example, Zha et al. [31] proposed an active learning approach
based on OED for video indexing, where they exploit the local
structure of the data and also the sample density, relevance and
diversity information, as well as both the labeled and the unla-
beled data, resulting in promising retrieval performance. Active
learning is often referred to experimental design in statistics,
and many OED based methods have been developed, such as
CLapRID [33], LapGOD [6], LapRDD [13], and HOD [20]. Given a
data point x, these methods usually consider a linear regression
model y¼wTxþϵ, where y is the observation, w is the weight
vector, ϵ is an independent Gaussian random variable with zero
mean and constant variance s2. They attempt to learn a linear
function f ðxÞ ¼ ŵTx. Assuming that a set of labeled samples
fðzi; yiÞgki ¼ 1 are available, the least squares is always used as the
cost function to estimate w by minimizing the residual sum of
squares, i.e.,

RSSðwÞ ¼ ∑
k

i ¼ 1
ðyi�wTziÞ2: ð1Þ

Its optimal solution is ŵ ¼ ðZZT Þ�1Zy, where Z¼ ½z1;…; zk�ARd�k

and y¼ ½y1;…; yk�T . For an unseen data point, its output can be
estimated by ŷ ¼ f ðxÞ ¼ ŵTx. By Gauss–Markov theorem [9], it has
been proved that ŵ is an unbiased estimation of w with the
covariance matrix, namely

CovðŵÞ ¼ s2ðZZT Þ�1; ð2Þ

where ZZT is the Hessian of RSSðwÞ.
Roughly speaking, there exist two types of criteria of OED [1].

The first one is to minimize the confidence region of the estimated
parameter ŵ , which results in D-optimal design (determinant
of HRSS), A-optimal design (trace of HRSS) and E-optimal design
(maximum eigenvalue of HRSS). The second one is to minimize the
variance of the predicted value over some region of interest (ROI),
which leads to I-optimal design (average predictive variance) and
G-optimal design (maximum predictive variance).

In addition, some active learning methods are designed upon
SVM [26,14], which select those data points closest to the boundary
for labeling by considering that the uncertainty of the points near
the boundary is larger than those far apart from the hyperplane.
Nonetheless, there are some drawbacks of the SVM based active
learning methods, i.e., the boundary of different classes is difficult
to estimate and it probably causes a failure without labeled points in
the beginning. Thus, we present the novel method in the context of
experimental design, which does not suffer from these limitations.
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