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a b s t r a c t

In this paper a polynomial fuzzy regression model with fuzzy independent variables and fuzzy
parameters is discussed. Within this paper the fuzzy neural network model is used to obtain an
estimate for the fuzzy parameters in a statistical sense. Based on the extension principle, a simple
algorithm from the cost function of the fuzzy neural network is proposed, in order to find the
approximate parameters. Finally, we illustrate our approach by some numerical examples.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Regression is a very powerful methodology for forecasting,
which is considered as an essential component of successful OR
applications. It is applied to evaluate the functional relationship
between the dependent and independent variables. Fuzzy regres-
sion analysis is an extension of the classical regression analysis in
which some elements of the model are represented by fuzzy
numbers. Fuzzy regression methods have been successfully applied
to various problems such as forecasting [6,7,34,17,35] and engineer-
ing [15]. Thus, it is very important to develop numerical procedures
that can appropriately treat fuzzy regression models.

In the literature, several papers have addressed the issue of
regression under a fuzzy environment. Tanaka et al. [32] first
formulated a problem of fuzzy regression. They considered the
fuzzy linear regression model

YðxÞ ¼ A0þA1x1þ⋯þAnxn ð1Þ

with symmetric triangular fuzzy parameters Ai chosen to match
given n-dimensional input vector xj ¼ ðxj1; xj2;…; xjnÞ with fuzzy
output yj; j¼ 1;2;…;m. The parameters in Eq. (1) were chosen,
through a linear programming solution method to meet for each
input–output pair ðxj; yjÞ

½yj�h � ½Y ðxjÞ�h; j¼ 1;2;…;m; ð2Þ

where ½Y ðxÞ�h is the h-cut for a specified level h. The objective was
to minimize the total spread of the fuzzy parameters subject to the

support of the estimated values that cover the support of the
observed values for a certain h-level. This technique was extended
by Tanaka and Ishibuchi to fuzzy numbers with quadratic mem-
bership function [30] and fuzzy numbers defined by a more
general shape function Lð�Þ [29].

The problem was simplified and recast as linear interval
regression by Ishibuchi and Tanaka in [12]. These interval regres-
sion models are closely connected to standard linear fuzzy
regression in Eqs. (1) and (2). In interval regression, the linear
programming problem is [4]

Minimize ywðx1Þþywðx2Þþ⋯þywðxmÞ
subject to ½yj�h � ½Y ðxjÞ�h; j¼ 1;2;…;m; ð3Þ
where yw(x) is the width of the interval

YðxÞ ¼ A0þA1x1þ⋯þAnxn ð4Þ
and Y and Ai are interval variables. Fuzzy models with trapezoidal
membership functions are easily derived from these interval
models [13].

Later, Tanaka [29], Tanaka and Watada [33] and Tanaka et al. [31]
made some improvements. Kao and Chyu [14] concept of least
squares which was widely applied in the classical regression analysis
was adopted to determine the regression coefficients. Ishibuchi et al.
[10] proposed a learning algorithm of fuzzy neural networks with
triangular fuzzy weights and Hayashi et al. [9] fuzzified the delta rule.
Buckley and Eslami [5] consider neural net solutions to fuzzy
problems. Recently, the fuzzy neural network model (FNNM) suc-
cessfully used for solving fuzzy polynomial equation and systems of
fuzzy polynomials [1,2], approximate solution of fuzzy linear systems
and fully fuzzy linear systems [19,25,26] and fuzzy differential
[18,21]. Recently, Mosleh et al. [22,20] proposed a learning algorithm
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of fuzzy neural network with crisp inputs, fuzzy weights and fuzzy
output for adjusting fuzzy weights of the fuzzy linear regression
model of the form

Y i ¼ A0þA1xi1þ⋯þAnxin;

where i indexes the different observations, xi1; xi2;…; xinAR, all
coefficients and Y i are fuzzy numbers. Then, Mosleh et al. [23]
proposed a learning algorithm of fuzzy neural network with crisp
inputs, fuzzy weights and fuzzy output for adjusting fuzzy weights of
the fuzzy polynomial regression model. If we have fuzzy inputs, fuzzy
weights and fuzzy output, how can we approximate the fuzzy
weights in this problem?

In this paper, we first propose an architecture of FNN with
fuzzy weights for fuzzy input vectors and fuzzy targets to find
approximate coefficients to the fully fuzzy polynomial regression
model (fuzzy polynomial regression with fuzzy weights, fuzzy
output signal and fuzzy inputs)

Y i ¼ Al0þ ∑
n

j ¼ 1
AljXijþ ∑

n

j ¼ 1
∑
n

k ¼ 1
AljkXijXikþ⋯

where i indexes the different observations, Xi1;Xi2;…;Xin, all
coefficients and Y i are fuzzy numbers. The input–output relation
of each unit is defined by the extension principle of Zadeh [36].
Output from the fuzzy neural network, which is also a fuzzy
number, is numerically calculated by interval arithmetic [3] for
fuzzy weights and real inputs. Next, we define a cost function for
the level sets of fuzzy outputs and fuzzy targets. Then, a crisp
learning algorithm is derived from the cost function to find the
fuzzy coefficients of the fuzzy polynomials regression models. The
advantages of the proposed method over some other methods are
discussed in this paper. The remaining part of the paper is
organized as follows. In Section 2, we discuss some basic defini-
tions. Section 3 gives details of problem formulation and the way
to construct the fuzzy trial function and training of a fuzzy neural
network for finding the unknown adjustable coefficients and the
algorithm is proposed in Section 4. Then, we compare this method
with other methods in Section 5. Numerical examples are dis-
cussed in Section 6 and conclusion is in final section.

2. Preliminaries

In this section the basic notations used in fuzzy calculus are
introduced. Let R be a universal real number set. Then a fuzzy
subset A of R is defined by its membership function
μA : R1⟶I ¼ ½0;1�. We denote by ½A�h ¼ fxARjμAðxÞZhg the h-
level set of A, where A0 is the closure of the set fxARjμAðxÞa0g.
A is called a normal fuzzy set if there exists an x such that
μAðxÞ ¼ 1. A is called a convex fuzzy set if μAðλxþð1�λÞyÞZ
minfμAðxÞ;μAðyÞg for λA ½0;1�. (That is, μA is a quasi-concave
function.)

Let f be a real-value function defined on R. f is said to be
upper semicontinuous if fxARjf ðxÞZhg is a closed set for each h.
Or equivalently, f is upper semicontinuous at y if and only if
8ϵ40; (δ40 such that jx�yjoδ implies f ðxÞo f ðyÞþϵ.

Definition 1. A is called a fuzzy number if the following condi-
tions are satisfied:

(i) A is a normal and convex fuzzy set.
(ii) Its membership function μA is upper semicontinuous.
(iii) The h-level set ½A�h is bounded for each hA ½0;1�.

The set of all the fuzzy numbers is denoted by E1.

A popular fuzzy number is the triangular fuzzy number
u¼ ðum;ul;urÞ where um denotes the modal value and the real

values ul40 and ur40 represent the left and right fuzziness,
respectively. The membership function of a triangular fuzzy
number is defined by

μuðxÞ ¼

x�um

ul
þ1; um�ulrxrum;

um�x
ur

þ1; umrxrumþur ;

0 otherwise:

8>>>><
>>>>:

Triangular fuzzy numbers are fuzzy numbers in LR representa-
tion where the reference functions L and R are linear. The set of all
triangular fuzzy numbers on R is called F̂Z .

From Zadeh [39], A is a convex fuzzy set if and only if its h-level
set ½A�h ¼ fxARjμAðxÞZhg is a convex set for all h. Therefore, if A is
a fuzzy number, then the h-level set ½A�h is a compact and convex
set; that is, A is a closed interval. The h-level set of A is then
denoted by ½A�h ¼ ½½A�Lh; ½A�Uh �. We also see that ½A�Lh and ½A�Uh are
continuous with respect to h, since its membership function is
upper semicontinuous.

Proposition 1 (Zadeh [36]). Let A be a fuzzy set with membership
function μA and the h-level set ½A�h be given. Then

μAðxÞ ¼ sup
hA ½0;1�

h:1½A�h ðxÞ:

A is called a crisp number with value m if its membership function is

μAðxÞ ¼
1 if x¼m;

0 otherwise:

�

A is called a nonnegative fuzzy number if μAðxÞ ¼ 0 for all xo0 and a
nonpositive fuzzy number if μAðxÞ ¼ 0 for all x40. It is obvious that
½A�Lh and ½A�Uh are nonnegative real numbers for all hA ½0;1� if A is a
nonnegative fuzzy number, and ½A�Lh and ½A�Uh are nonpositive real
numbers for all hA ½0;1� if A is a nonpositive fuzzy number.

2.1. Operations on fuzzy numbers

We briefly mention fuzzy number operations defined by the
extension principle [36]. Let � be any binary operation � and �
between two fuzzy numbers A and B. The membership function of
A � B is defined by

μA�BðzÞ ¼ supfμAðxÞ4μBðyÞjz¼ x○yg
where 4 is the minimum operator and � ¼ � or � correspond to
the operations ○¼ þ or 	:

We denote by ϝ the set of all fuzzy subsets of R. Let f ðx1;…; xnÞ
be a nonfuzzy function from Rn into R and A1;…;An be n fuzzy
subsets of R. By the extension principle in [36–38], we can induce
a fuzzy-valued function f : ϝn⟶ϝ from the nonfuzzy function
f ðx1;…; xnÞ. That is to say, f ðA1;…;AnÞ is a fuzzy subset of R. The
membership function of f ðA1;…;AnÞ is defined by

μf ðA1 ;…;AnÞðzÞ ¼ supfμA1
ðx1Þ4⋯4μAn

ðxnÞjz¼ f ðx1;…; xnÞg:

Proposition 2 (Wu [35]). Let f ðx1;…; xnÞ be a real-value function
and A1;A2;…;An be n fuzzy subsets of R. Let F : ϝn⟶ϝ be a fuzzy-
value function induced by f ðx1;…; xnÞ via the extension principle.
Suppose that each membership function μAi

is upper semicontinuous
for all i¼ 1;…n and fðx1;…; xnÞjz¼ f ðx1;…; xnÞg is a compact set (it
will be a closed and bounded set in Rn for all z. Then the h-level set of
FðA1;…;AnÞ is
½FðA1;…;AnÞ�h ¼ ff ðx1;…; xnÞjx1A ½A1�h;…; xnA ½An�hg:

Proposition 3 (Wu [35]). Let f ðx1;…; xnÞ be a continuous real-value
function and A1;A2;…;An be n fuzzy numbers. Let F : ϝn⟶ϝ be a
fuzzy-value function induced by f ðx1;…; xnÞ via the extension prin-
ciple. Suppose that fðx1;…; xnÞjz¼ f ðx1;…; xnÞg is a compact set
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