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a b s t r a c t

Previous research has shown that sensor–motor tasks inmobile robotics applications can bemodelled
automatically, using NARMAX system identification, where the sensory perception of the robot is mapped
to the desired motor commands using non-linear polynomial functions, resulting in a tight coupling
between sensing and acting — the robot responds directly to the sensor stimuli without having internal
states or memory.
However, competences such as for instance sequences of actions, where actions depend on each other,

require memory and thus a representation of state. In these cases a simple direct link between sensory
perception and themotor commandsmaynot be enough to accomplish the desired tasks. The contribution
of this paper to knowledge is to showhow fundamental, simpleNARMAXmodels of behaviour can be used
in a bootstrapping process to generate complex behaviours that were so far beyond reach.
We argue that as the complexity of the task increases, it is important to estimate the current state

of the robot and integrate this information into the system identification process. To achieve this we
propose a novel method which relates distinctive locations in the environment to the state of the robot,
using an unsupervised clustering algorithm. Once we estimate the current state of the robot accurately,
we combine the state information with the perception of the robot through a bootstrapping method to
generate more complex robot tasks: We obtain a polynomial model which models the complex task as a
function of predefined low level sensor–motor controllers and raw sensory data.
The proposed method has been used to teach Scitos G5mobile robots a number of complex tasks, such

as advanced obstacle avoidance, or complex route learning.
Crown Copyright© 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

Fundamentally, the behaviour of a robot is a result of the
interaction of three factors: (i) the robot’s hardware, (ii) the robot’s
controller, and (iii) the environment the robot is operating in.
The robot acquires information from the environment through
its sensors, which provides the input signals to the controller.
The controller computes the desired motor commands and the
robot performs these commands in the environment to achieve the
desired task [1].
Given that sensing and the actions of a robot are coupled dy-

namically, given the sensitivity of robot sensor’s to slight changes
in the environment, the robot–environment interaction exhibits
complex, non-linear, often chaotic and usually unpredictable char-
acteristics [2,3]. Because of this, the task of robot programming –
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designing a control program to achieve a desired behaviour – is
difficult. Unlike other engineering disciplines, there is no formal,
theory-based design methodology which the robot programmer
can follow to program a robot to achieve a desired task.
Nevertheless, we have previously shown that the robot pro-

gramming process can be automated: sensor–motor competences
in mobile robotics applications can be modelled automatically
and algorithmically, using robot training and system identification
methods. The stages of our method are summarized below:

(i) Acquisition of a training data set. First the programmer
demonstrates the desired behaviour to the robot via driving
it manually [4,5] or direct human demonstration [6,7].
During this run, sensory perception and the desired velocity
commands of the robot are logged. There is a considerable
corpus of robotics research on robot training, for example
training by verbal instructions [8], using expectations [9] or
imitation of a human trainer [10]. This work on robot training
is relevant to the experiments presented here, in that the same
method of acquiring training data is used, but the focus of our
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experiments is not on training, but on automatically obtaining
low level behaviours and, again automatically, combining
these intomore complex behaviours,without the need to have
dedicated robot programming skills.

(ii) Preprocessing of input signals. Having thus obtained the raw
training data, we preprocess the input signals to reduce the
dimensionality of the input space [11] and also to identify the
important sensory readings, which are highly correlated with
the desired motor commands [12].

(iii) Model estimation. We then model the relationship between
the encoded sensory perception and the actions of the robot
using ARMAX (Auto-Regressive Moving Average models with
eXogenous inputs) [13,14] and NARMAX (Non-linear AR-
MAX) [15,16] system identification methods. These tech-
niques are supervised parameter estimation methodologies
for identifying both the important model terms and the pa-
rameters of unknown non-linear dynamic systems. They pro-
duce linear or non-linear polynomial functions to model the
input–output relationship. A single model is usually enough
to identify the whole relationship successfully.

(iv) Model validation and optimization. Once the sensor-based
controllers are obtained, they are used to drive the robot in the
target environment to validate their performances. Also at this
stage, it is sensible to carry out sensitivity analysis [17,18] in
order to estimate the influence of individual sensor readings
upon the robot’s global behaviour [19,6]. This would help
us to determine which parameters in the model contribute
the most to output variability and which parameters are
insignificant and can be eliminated from the final model,
leading to more parsimonious models.

(v) Analytical analysis of the obtainedmodels. The representation
of the task as a transparent, analysable polynomial model
simplifies the identification of the important factors that
affect the robot’s behaviour. For instance, the error reduction
ratio gives an indication of the importance of individual
model terms. Likewise, variance-based methods of sensitivity
analysis [18,20,21] or entropy-based methods [22] allow the
identification of important input components (e.g. sensors).

1.1. Motivation: From simple to complex tasks

The method described above has been successfully applied
to generate various sensor–motor tasks, from simple behaviours,
such as wall following [4] or door traversal [19], to some
complicated behaviours, such as following a moving object [23]
and path learning [11].
However as the complexity of task increases, representing the

whole relationship between sensory perception and the desired
motor responses of the robot in one single model using only raw
sensory inputs would lead to large models. Training such models
is extremely difficult, and obtained models often exhibit brittle
performance.
The novel contribution of this paper is to show how the

NARMAX system identificationmethod can be used tomodelmore
complex robot training tasks, such as tasks where sensor–motor
couplings change along a path, or depending on circumstance. To
do so, we focus on two fundamental ideas:

(i) For complex tasks, the actions of the robot depend not only
on raw sensory perception, but also on the current state of the
robot. Therefore there is a need to represent the present state
of the robot, and to incorporate it into the model.

(ii) As our goal is to simplify the robot programming process
such that non-programmers can generate robot control code,
there is still need for a simple method to generate the motor
commands that take the robot from one state to another,
accomplishing the desired task.

Fig. 1. The proposed method to cope with the state transition problem while
generating robot control programs: a classifier divides the perception–action space
of the robot into subspaces, and generates a separate model for each subspace.

In this paper, we address both issues with a general overlook.
In Section 2 we focus on the state transition problem, and propose
a novel method relating the state of the robot to distinctive objects
seen in the environment: First, the robot learns to recognize
landmarks in the environment, using standard classification
techniques. Once the robot is capable of localising, using these
landmarks, it obtains a different sensor–motor coupling for each
recognized landmark.
After estimating which state the robot is in, the next step is to

combine the state information with the perception of the robot in
a general framework to generate the essential motor commands in
order to accomplish the desired complex robot training tasks.
In Section 3, we therefore introduce a bootstrapping method

of generating complex robot training tasks using polynomial
NARMAX models. The method is based on obtaining hierarchical
polynomial models which model the desired task by combining
predefined low level sensor–motor controllers, raw sensory data
and state inputs.

2. State estimation through unsupervised learning

In complex tasks it is often the case that the relationship
between perception and the motor response varies along the
robot’s path. We deal with this situation, using two stages:
In the first stage the robot clusters the environment in to sub-

spaces using standard classification techniques (SOM, K -means,
etc.) based on its own sensory perception. Note that here we as-
sume that state transitions can be observed by the robot through
its sensors. Then in the second stage it obtains a model for each
cluster separately using system identification techniques (Fig. 1).
With this method, state transitions are related to robot–

environment interaction, which allows the robot to identify the
state changes automatically, using its own perception. In this
paper, the K -means algorithm is used as a classifier, described in
Section 2.1.
It might be instructive at this point to refer briefly to the work

done on simultaneous localisation and mapping (SLAM). SLAM
focusses on precise robot localisation, using adaptive filtering
techniques such as Kalman filters and Bayesian methods [24],
and is a more sophisticated method of robot self-localisation than
simple clustering of a robot’s sensory perception. We use the
clustering to divide the input space to our system identification
process, not to localise precisely, i.e. we do not perform SLAM in
the experiments presented here.

2.1. The K-means classifier

The k-means algorithm [25] is an unsupervised clustering
algorithm which is used to classify a given data set into k clusters.
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