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h i g h l i g h t s

• We present a new robust tactile sensor aimed at surface identification.
• We evaluate the performances of 7 features for surface identification.
• We use a Pitman–Yor process to autonomously learn a perception model.
• The model recognized all surfaces perfectly without providing the number of surfaces.
• Identification success rate on unseen data is over 90%.
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a b s t r a c t

In recent years, autonomous robots have increasingly been deployed in unknown environments and
required to manipulate or categorize unknown objects. In order to cope with these unfamiliar situations,
improvements must be made both in sensing technologies and in the capability to autonomously
train perception models. In this paper, we explore this problem in the context of tactile surface
identification and categorization. Using a highly-discriminant tactile probe based upon large bandwidth,
triple axis accelerometer that is sensitive to surface texture andmaterial properties, we demonstrate that
unsupervised learning for surface identification with this tactile probe is feasible. To this end, we derived
a Bayesian nonparametric approach based on Pitman–Yor processes tomodel power-law distributions, an
extension of our previouswork using Dirichlet processes Dallaire et al. (2011).When tested against a large
collection of surfaces and without providing the actual number of surfaces, the tactile probe combined
with our proposed approach demonstrated near-perfect recognition in many cases and achieved perfect
recognition given the right conditions. We consider that our combined improvements demonstrate the
feasibility of effective autonomous tactile perception systems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the last 20 years, autonomous exploration of unknown
environments or objects by robots has been extensively studied. In
general, these studies [1,2] used range sensors (sonar, or laser) or
cameras to gather information about the environment. However,
it is not always possible to use these sensing modalities, in which
case one should consider exploring the environmentmore directly,
possibly via tactile sensing. This strategy is seen in animals, where
tactile sensing is a fundamental mechanism allowing them to
navigate their environment blindly or perform surface material
categorization [3].
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Over the years, many types of tactile probes have been devel-
oped to mimic the sense of touch, whether for surface texture
recognition [4] or surface feature recognition [5–8]. As they are,
by their very nature, immune to numerous problems that plague
vision-based sensing, such as illumination changes, occlusion, or
the high-dimensionality output (millions of pixels) of cameras,
tactile-based systems have the potential to offermuchmore robust
methods for surface recognition. Consequently, tactile perception
could be used in challenging environments where vision systems
are difficult to operate. In outdoor setting for example, large and
varying illumination changes are present, complicating the use of
computer vision.

One of the crucial aspects involved in the development of
any artificial perception system is that it must be trained before
it can perform recognition. With access to a training database
where sensor data samples have been hand-labeled, any standard
supervised learning techniques can be used. Ideally, we are looking
forminimal human supervision during this learning process, either
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to reduce labor costs or in order to develop systems exhibiting
a higher level of autonomy. This implies that useful information
required for supervised learning, such as data labels and number of
classes, will not be available. Consequently, training a perception
system under such conditions is significantlymore challenging. On
the other hand, unsupervised learning approaches allow systems
to automatically adapt themselves based on experience, without
parameter tuning or data labeling.

A further step towards autonomy is by improving learning
flexibility, using infinitely large parameter space. This way, the
complexity of the model scales appropriately with the amount of
training data. This is exactlywhat Bayesian nonparametric learning
methods have to offer, ensuring a considerable degree of flexibility
in statisticalmodelingwhen compared to their parametric alterna-
tives. In our previouswork [9], we thereby proposed amodel based
onDirichlet processes to perform autonomous surface recognition.
However, in the context of outdoor robot navigation and for many
other applications involving natural phenomena, models yielding
power-law behavior, unlike Dirichlet processes, are more appro-
priate to represent the data.

In this paper, we present a more general framework for
autonomous surface recognition based on Pitman–Yor processes,
a model generalizing Dirichlet processes and yielding power-law
behavior. To this end, we first discuss in Section 2 previous works
on tactile sensing systems and Bayesian nonparametrics. Section 3
describes the tactile probe, the data gathering process and the test
sets used for the experiments. In Section 4, we demonstrate the
surface identification capability of our tactile probe and evaluate
the chosen features by ranking them according to their supervised
learning performance. Section 5 presents the method used to
autonomously learn to differentiate surfaces, without the need
to specify data labels or the number of surfaces in the training
set. Finally, Section 7 concludes and presents future research
directions.

2. Previous work

2.1. Tactile sensing

For human beings, tactile sensory modalities in the fingertips
are used to capture multiple object properties such as texture,
roughness, spatial features, compliance or friction. These tactile
receptors are capable of detecting vibrations as the finger slides [4],
making it possible to discriminate between surface textures [10,
11], including estimating the spatial frequency of the texture [12].
On the other hand, detecting surface features such as edges
or corners [5,8], temperature [13] or compliance [14] does not
necessarily require such dragging motion.

Some researchers have focused their attention on artificial skin,
particularly on the concept of having flexible andmodular compo-
nents [15–18]. However, the general focus of these skin sensors is
more about the identification of contact point locations and pres-
sure forces [17], or the integration of multiple sensing modalities
(temperature, acceleration, proximity and vibration) [18], as op-
posed to our goal of surface identification.

Tactile sensing in robotics is not just confined to skin-covered
finger devices. Indeed, tactile sensing technologies not embedded
in fingers have been proposed over the years, in the likes of
artificial whiskers [19–22], array of whiskers [23,24], or artificial
antennas [25]. These devices can estimate surface profile, perform
rudimentary object recognition or provide distance estimation.

2.2. Supervised learning with tactile sensing

The targeted application in this paper is surface type identifica-
tion via tactile sensing. By its direct contact with an object, tactile

sensing has the capability to gather information not captured by vi-
sual sensor, thereby improving object recognition. One commonly-
used physical characteristic employed in surface identification is
its texture. By rubbing a tactile probe on a textured surface, vibra-
tions are generated with a temporal periodicity connected to the
spatial periodicity of the texture [12].

In the canonical scenario, a tactile probe sensitive to vibrations
is rubbed against the investigated surface. Several features are
then extracted from the sensor’s signal, in the hope of reducing
the dimensionality of the problem without significant loss of
information. Finally, a classification algorithm is used to recognize
the surface, based on the extracted features. Thus, most tactile
recognition systems can be categorized based on the sensing
technology, features extracted from the sensor signals, or the type
of classifier employed.

Many examples of these canonical descriptions are present in
the literature, particularly in the context of supervised learning.
Hipp et al. [26], for example, presented results regarding texture
classification for a system of actuated whiskers. In their case, a
magnetometer captured the whisker’s vibrations, as it was made
of a metal capable of modifying the local magnetic field. The
sensor signal was then band-passed between 30 and 150 Hz,
and its power spectrum was computed as features. The training
consisted in fitting multidimensional Gaussian density estimators
on the spectrum. Using amaximum likelihood classification on the
testing set, they achieved a success rate of 39% for eight different
grades of sandpaper. Fend et al. [27], on the other hand, used
a microphone to record the vibrations induced in genuine rat
whiskers over 11 surfaces. The features used were the combined
and smoothed power spectra of individual sweeps, to generate
average power spectra signatures which are more stable. They
used an instance-based learning approach to determine howmany
texture signatures were discernible, using a Euclidean distance
between signatures as metric. Overall, Fend and his colleagues
concluded that texture identification could be improved by using
all whiskers at the same time and by increasing the number of
sweeps. However, quantitative results are not readily available
from the paper.

Surface classification results can also be improved by focusing
on the particular machine learning techniques applied during
the classification stage. Jamali and Sammut [28], for example,
employed a majority voting scheme to improve the accuracy of
surface identification. Their majority voting approach mimicked
the strategy used by humans which consists in trying several
explorations of the material’s surface before reaching a decision.
They found that majority voting greatly improves the robustness
of classifiers such as naive Bayes, decision trees, naive Bayes tree
(NBTrees), boosting on NBTrees and decisions trees. By doing so,
they showed that they can distinguish between nine different
surfaces, such as carpets, vinyl flooring, tiles, sponge, wood and
polyvinyl-chloride (PVC)wovenmeshwith an accuracy of 95%±4%
on unseen test data, over a test set of 8 surfaces. They also studied
the impact of the extracted features on the classification results.
In their finger, they used 4 polyvinylidene fluoride (PVDF) sensors
to capture vibrations induced during the probing process. Most
of their features consisted in the frequencies of the peaks in the
amplitude spectrum of the PVDF signals, keeping the n highest
peaks of each of the 4 spectra. They showed that larger values of
n, thus larger feature vectors, improve classification results. They
noted, however, that this increase in performance was limited
when n > 10.

Fishel et al. [29] adopted an active classification approach to
the problem of surface identification based on artificial fingers
sliding on surfaces. In a way, their work is an extension of the
majority voting algorithm used by Jamali and Sammut [28], but
with a more informed search strategy. Indeed, when an active
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