
Robotics and Autonomous Systems 62 (2014) 545–555

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Targets-Drives-Means: A declarative approach to dynamic behavior
specification with higher usability
V. Berenz a,b,∗, K. Suzuki c

a RIKEN Brain Science Institute, Japan
b University of Tsukuba Artificial Intelligence Laboratory, Japan
c Department of Intelligent Interaction Technology, Faculty of Engineering, Information and Systems, University of Tsukuba, Japan

a r t i c l e i n f o

Article history:
Received 16 April 2013
Received in revised form
20 November 2013
Accepted 28 December 2013
Available online 9 January 2014

Keywords:
End-user programming
Usability
Application layer
Behavior specification
Dynamic behaviors
Commercial humanoid robots
TDM

a b s t r a c t

Small humanoid robots are becoming more affordable and are now used in fields such as human–robot
interaction, ethics, psychology, or education. For non-roboticists, the standard paradigm for robot visual
programming is based on the selection of behavioral blocks, followed by their connection using commu-
nication links. These programs provide efficient user support during the development of complex series
of movements and sequential behaviors. However, implementing dynamic control remains challenging
because the data flow between components to enforce control loops, object permanence, the memories
of object positions, odometry, and finite state machines has to be organized by the users. In this study,
we develop a new programming paradigm, Targets-Drives-Means, which is suitable for the specification
of dynamic robotic tasks. In this proposed approach, programming is based on the declarative association
of reusable dynamic components. A central memory organizes the information flows automatically and
issues related to dynamic control are solved by processes that remain hidden from the end users. The
proposed approach has advantages during the implementation of dynamic behaviors, but it requires that
users stop conceiving robotic tasks as the execution of a sequence of actions. Instead, users are required
to organize their programs as collections of behaviors that run in parallel and compete for activation. This
might be considered non-intuitive but we also report the positive outcomes of a usability experiment,
which evaluated the accessibility of the proposed approach.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Several commercially available humanoid robots are ubiquitous
programmable tools, rather than being designed to perform spe-
cific tasks, including Nao by Aldebaran Robotics, DARwIn-OP by
Robotis, and Palro from Fujisoft. End user programming is essen-
tial for these products, where users are required to specify behav-
ioral tasks. Humanoid robots are becoming more accessible and
this means that the usability of such software is increasingly im-
portant. Nao, the humanoid robot sold by Aldebaran robotics, is
used in research areas such as education [1], psychology [2] and
robot ethics [3]. In these areas, the robot users do not necessarily
have backgrounds in programming or robot behavior design.

Visual programming environments are available that allow
non-programmers to create robot applications. The current stan-
dard paradigm for robot visual programming is based on the selec-

∗ Corresponding author at: RIKEN Brain Science Institute, Japan. Tel.: +81
9018458572.

E-mail address: vincent@brain.riken.jp (V. Berenz).

tion of behavioral blocks, followed by their connection to obtain
the desired flow of action [4,5]. These programs provide very effi-
cient support by allowing users to develop complex series ofmove-
ments and sequential behaviors. However, the programming of
autonomous dynamic behavior remains challenging. This ismainly
because the current programming paradigm enforced by visual
programming software (the selection and connection of behavior
blocks) requires that users manually specify the information flow
between components.

Thus, the present study focused on the design of a new pro-
gramming paradigm, which is suitable for the specification of dy-
namic robotic tasks, and a usability evaluation was performed.
In particular, we considered how the features used by roboticists
to handle issues related to dynamic control can be manipulated
via the simple association of reusable components. These features
include resource management, open intrinsic motivation, asyn-
chronous exchange of data via a centralized memory, schematic
representation of information, and the use of dynamic compo-
nents. Thus, we developed Targets-Drives-Means (TDM), which is
an architecture based on a new paradigm for behavioral specifica-
tion that employs declarative associations of reusable components.

0921-8890/$ – see front matter© 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.robot.2013.12.010

http://dx.doi.org/10.1016/j.robot.2013.12.010
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2013.12.010&domain=pdf
mailto:vincent@brain.riken.jp
http://dx.doi.org/10.1016/j.robot.2013.12.010


546 V. Berenz, K. Suzuki / Robotics and Autonomous Systems 62 (2014) 545–555

Previously, TDM was tested in terms of code reusability [6]. The
core engine and the libraries of TDMhave beenmade open source.1

The proposed approach has advantages during the implemen-
tation of dynamic behaviors, but it requires that users stop con-
ceiving robotic tasks as the execution of sequences of actions.
Instead, users are required to organize their program as collections
of behaviors that run in parallel and compete for activation. This
non-intuitive change in the programming paradigm is demanding
and it was not clear whether it would be suitable for inexperienced
users of humanoid robots. Thus, we also conducted a usability ex-
periment to evaluate the accessibility of the proposed approach.
These tests focused on the usability of the proposed programming
paradigm, rather than the usability of a particular graphical imple-
mentation.

In the next section, we clarify our research focus by analyzing
the difficulties of programming dynamic behavior and we justify
the need for a novel solution. In Section 3, we describe our pro-
posed approach and Section 4 presents the results of the usability
tests. Finally, we discuss the results obtained in this study.

2. Programming dynamic behavior

Programming dynamic behaviors for small commercial hu-
manoid robots is a complicated task for inexperienced roboticists,
where the users of robots must achieve the following.

• Organize the information flow between modules that run at
different rates.

• Ensure robustness and the continuity of actions for possibly
unreliable sensory modules.

• Implementmemories of the existence and positions of detected
objects.

• Organize the information flow from sensory inputs to distin-
guish between objects.

• Implement the desired logic for action selection, while consid-
ering the requirement for action correction in case of failure.

In this section, we explore these difficulties and provide further
details based on an example. We also justify the need for a new
solution by showing how the standard flowchart approach fails to
support users in overcoming these difficulties.

2.1. Difficulties of dynamic control

Typically, beginnerswill view tasks as a succession of sub-tasks.
For example, ‘‘kicking the closest ball’’ could be split into the fol-
lowing sequence: 1. search for the balls, 2. evaluate the distance,
3. select the closest ball, 4. walk to the selected ball, and 5. kick
the selected ball. However, this description ignores the reactive as-
pects, which are essential for ensuring the robustness of execution.
For example, the walking parameters should be updated online to
compensate for errors and to ensure that an appropriate reaction
occurs if the ball is moved. This implies that there must be online
re-estimation of the position of the ball and a head tracking system
should be implemented to ensure that the ball remains in the field
of vision. This raises the issue of data exchange between modules
which must run in parallel at different rates.

Another issue is ensuring the continuity of behavior if the ball is
out of sight. This may occur if the head tracking system and/or the
computer vision program are unreliable. Thus, occasional updates
of the position of the target ball are required based on odometry.
But also the logic for differentiating between non-detection due
to temporary limitation of the detection system and the robot

1 http://www.ai.iit.tsukuba.ac.jp/research/tdm/.

definitely losing track of the ball must be implemented, and
the necessary actions have to be programmed (e.g. stopping the
walking and searching for the ball again).

If several balls have been detected, the robot must re-evaluate
in a continuousmanner the ball to be kicked. Thus, the positions of
balls that are not currently in the field of visionmust also be main-
tained in a memory and updated using odometry. The simultane-
ous detection of several balls implies that there is a risk of the robot
switching repeatedly between walking toward one ball to walking
toward another. The systemmust enforce a notion of object perma-
nence that differentiates between these two balls and the appro-
priate information flow needs to bemanaged between sensing and
actingmodules. This implies a system that systematically treats the
continuous uniform information input from the sensory module
and process it into knowledge about distinct objects. This system
must be applicable to an unknown number of balls. Advanced fea-
tures (e.g. obstacle avoidance) require the robot to share its atten-
tion between several objects without stopping walking, meaning
complex headmotion suitable formulti-object head-trackingmust
be performed.

Furthermore, dynamic behaviors can never be described fully
by a succession of fixed sub-tasks. For example, if a ball is removed
while the robot is walking toward it, the expected action sequence
is interrupted and the robot must either redirect itself to another
ball or restart the ball-searching routine.

2.2. Solutions for dynamic control

Solutions have been proposed that address the problems re-
lated to dynamic control in a systematic manner. For example,
URBI [7] and TDL [8] are programming languages, which were de-
veloped specifically for robot programming. URBI provides a syn-
tax that allows the organization of code into different processes
that either run sequentially or in parallel, and it also provides tools
to monitor their execution. In TDL, the code is organized into task
trees,which encode the hierarchical decomposition of tasks aswell
as the synchronization of constraints between tasks. A large range
of robotic architectures have been proposed, including solutions
based on hierarchical control architectures [9], reactive architec-
tures [10], and hybrid systems [11–14]. More recently, specialized
operating systems have been proposed, such as ROS [15], which or-
ganize code into asynchronousmodules that exchange data using a
data subscription protocol. Hierarchical organization of behaviors
and modularity are also being investigated [16–18].

These solutions manage the integration and communication
between different types of hardware and software and support
the implementation of reaction, as well as behavioral specification.
However, these programs have been produced by robot developers
and are targeted at this community, whichmeans that they are not
intended to be used by non-roboticists and a solid background in
computer science/robotics is required for their use.

2.3. Software that facilitates greater usability

An approach that provides flexible architectures is the integra-
tion of configurable modules. Two examples of these architectures
are SAFSR for service robots [19] and B3IA for the control of robots,
which are used as intervention tools for childrenwith autism spec-
trum disorders [20]. SAFSR and B3IA are configurable but are also
domain-specific.

2.4. Emotionally Grounded Architecture (EGO)

EGO was developed for managing behaviors in Sony Aibo and
QRIO [21]. In EGO, behaviors are specified by organizing modules

http://www.ai.iit.tsukuba.ac.jp/research/tdm/


Download English Version:

https://daneshyari.com/en/article/412344

Download Persian Version:

https://daneshyari.com/article/412344

Daneshyari.com

https://daneshyari.com/en/article/412344
https://daneshyari.com/article/412344
https://daneshyari.com

