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a b s t r a c t

Data association is one of the core problems of simultaneous localization and mapping (SLAM), and
it requires knowledge about the uncertainties of the estimation problem in the form of marginal
covariances. However, it is often difficult to access these quantities without calculating the full and dense
covariance matrix, which is prohibitively expensive. We present a dynamic programming algorithm for
efficient recovery of the marginal covariances needed for data association. As input we use a square
root information matrix as maintained by our incremental smoothing and mapping (iSAM) algorithm.
The contributions beyond our previous work are an improved algorithm for recovering the marginal
covariances and a more thorough treatment of data association, now including the joint compatibility
branch and bound (JCBB) algorithm.We further show how tomake information theoretic decisions about
measurements before actually taking the measurement, therefore allowing a reduction in estimation
complexity by omitting uninformativemeasurements.We evaluate ourwork on simulated and real-world
data.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Data association is an essential component of simultaneous
localization andmapping (SLAM) [1]. The data association problem
in SLAM, which is also known as the correspondence problem,
consists of matching the current measurements with their
corresponding previous observations. Correspondences can be
obtained directly between measurements taken at different times,
or by matching the current measurements to landmarks already
contained in themap based on earliermeasurements. A solution to
the correspondence problem provides frame-to-frame matching,
but also allows for closing large loops in the trajectory. Such loops
are more difficult to handle as the estimation uncertainty is much
larger than between successive frames, and the measurements
might even be taken from a different direction.
Performing data association can be difficult especially in

ambiguous situations, but is greatly simplified when the state
estimation uncertainties are known. Parts of the overall SLAM state
estimate uncertainty are needed to make a probabilistic decision
based on the maximum likelihood (ML) criterion or when using
the joint compatibility branch and bound (JCBB) algorithmbyNeira
and Tardos [2], a popular algorithm for SLAM [3,1]. The parts that
are required are so-called marginal covariances that represent
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the uncertainties between a relevant subset of the variables, for
example a pose and a landmark pair.
However, it is generally difficult to recover the exact marginal

covariances in real time. But as mobile robot applications require
decisions to be made in real time, we need an efficient solution for
recovering the marginal covariances. While it is trivial to recover
the covariances from an Extended Kalman Filter (EKF), its uncer-
tainties are inconsistent when non-linear measurement functions
are present, which is typically the case. Other solutions to SLAM,
for example based on iterative equation solvers such as [4–7],
cannot directly access the marginal covariances. An alternative is
to use conservative estimates of themarginal covariances as in [8];
however, they will provide fewer constraints for ambiguous data
association decisions and therefore fail earlier.
Our solution provides efficient access to the marginal covari-

ances based on the square root informationmatrix. Such a factored
information matrix is maintained by our incremental smoothing
and mapping (iSAM) algorithm [9], which efficiently updates the
factored representation when new measurements arrive. Our so-
lution consists of a dynamic programming algorithm that recovers
only parts of the full covariance matrix based on the square root
information matrix, thereby avoiding having to calculate the full
dense covariance matrix, which contains a number of entries that
is quadratic in the number of variables.
The contributions over our previous work [10,9] are an

improved marginal covariance recovery algorithm and a detailed
discussion of the algorithm. We also add the JCBB algorithm to
our discussion of data association techniques, and use a uniform
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mathematical presentation to contrast the presented methods.
Beyond typical data association work, we further show how to use
these marginal covariances to determine the value of a specific
measurement, allowing one to drop redundant or uninformative
measurements in order to increase estimation efficiency. We
present detailed evaluations on simulated and real-world data.
And finally we provide insights into using JCBB versus the RANSAC
algorithm by Fischler and Bolles [11].

2. Covariance recovery

We show how to efficiently obtain selected parts of the
covariance matrix, the so-called marginal covariances, based on
a square root information matrix. But first we briefly introduce
the square root information matrix and an efficient algorithm for
calculating it.

2.1. Square root information matrix

The square root information matrix appears in the context
of smoothing and mapping (SAM) [12], a smoothing formulation
of the SLAM problem. The smoothing formulation includes the
complete robot trajectory, that is all poses xi (i ∈ {0 . . .M}) in
addition to the landmarks lj (j ∈ {1 . . .N}). This is in contrast
to typical filtering methods that only keep the most recent pose
by marginalizing out previous poses. Smoothing provides the
advantage of a sparse information matrix, therefore allowing one
to efficiently solve [12] the equation system.
The SLAM problem typically contains non-linear functions

(through robot orientation and bearing measurements) and
therefore requires iterative linearization and solution steps. Please
see [12,9] for a detailed treatment of the process andmeasurement
models, and their linearization and combination into one large
least-squares system. One step of the resulting linearized SLAM
problem can be written as

argmin
x
‖Ax− b‖2 (1)

where A is the measurement Jacobian of the SLAM problem at the
current linearization point, x the unknown state vector combining
poses and landmarks, and b the so-called right-hand side that
is irrelevant in this work. Solutions to the state vector x in (1)
can be found based on the square root information matrix R, an
upper triangular matrix that is found by Cholesky factorization
of the information matrix I := ATA = RTR or directly by QR
factorization of the measurement Jacobian A = Q

[
R
0

]
. The upper

triangular shape of the square root information matrix allows
efficient solution of the SLAM problem by back-substitution.
In practice it is too expensive to refactor the informationmatrix

each time a new measurement arrives. Instead, our incremental
smoothing and mapping (iSAM) algorithm [9] updates the square
root information matrix directly with the new measurements.
Periodic variable reordering keeps the square root information
matrix sparse, allowing efficient solution by back-substitution as
well as efficient access to marginal covariances, which is described
next.

2.2. Recovering marginal covariances

Knowledge of the relative uncertainties between subsets
{j1, . . . , jK } of the SLAM variables are needed for data association.
In particular, the marginal covariances
Σj1j1 ΣTj2j1 · · · ΣTjK j1

Σj2j1 Σj2j2 · · · ΣTjK j2
...

...
. . .

...
ΣjK j1 ΣjK j2 · · · ΣjK jK

 (2)

Fig. 1. Only a small number of entries of the dense covariance matrix are of
interest for data association. In this example, both the individual and the combined
marginals between the landmarks l1 and l3 and the latest pose x2 are retrieved.
As we show here, these entries can be obtained without calculating the full dense
covariance matrix.

Fig. 2. Marginal covariances projected into the current robot frame (robot indicated
by red rectangle) for a short trajectory (red curve) and some landmarks (green
crosses). The exact covariances (blue, smaller ellipses) obtained by our fast
algorithm coincide with the exact covariances based on full inversion (orange,
mostly hidden by blue). Note the much larger conservative covariance estimates
(green, large ellipses) as recovered in our previous work [9]. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

are the basis for advanced data association techniques that we
discuss in detail in Section 3, as well as for information theoretic
decisions about the value of measurements as discussed in
Section 4. This marginal covariance matrix contains various blocks
from the full covariance matrix, as is shown in Fig. 1. Calculating
the full covariance matrix to recover these entries is not an option
because the covariancematrix is always densely populatedwith n2

entries, where n is the number of variables. However, we show in
the next section that it is not necessary to calculate all entries in
order to retrieve the exact values of the relevant blocks.
Recovering the exact values for all required entries without

calculating the complete covariance matrix is not straightforward,
but can be done efficiently by again exploiting the sparsity
structure of the square root information matrix R. In general, the
covariance matrix is obtained as the inverse of the information
matrix

Σ := (ATA)−1 = (RTR)−1 (3)

based on the factor matrix R by noting that

RTRΣ = I (4)

and performing a forward substitution, followed by a back
substitution

RTY = I, RΣ = Y . (5)

Because the information matrix is not band-diagonal in general,
this would seem to require calculating all n2 entries of the fully
dense covariance matrix, which is infeasible for any non-trivial
problem. This is where we exploit the sparsity of the square root
information matrix R. Both Golub and Plemmons [13] and Triggs
et al. [14] present an efficient method for recovering only the
entries σij of the covariance matrixΣ that coincide with non-zero
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