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a b s t r a c t

Camera networks are complex vision systems difficult to control if the number of sensors is getting higher.
With classic approaches, each camera has to be calibrated and synchronized individually. These tasks are
often troublesome because of spatial constraints, and mostly due to the amount of information that need
to be processed. Cameras generally observe overlapping areas, leading to redundant information that are
then acquired, transmitted, stored and then processed. We propose in this paper a method to segment,
cluster and codify images acquired by cameras of a network. The images are decomposed sequentially into
layers where redundant information are discarded. Without the need of any calibration operation, each
sensor contributes to build a global representation of the entire network environment. The information
sent by the network is then represented by a reduced and compact amount of data using a codification
process. This framework allows structures to be retrieved and also the topology of the network. It can also
provide the localization and trajectories of mobile objects. Experiments will present practical results in
the case of a network containing 20 cameras observing a common scene.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

As cameras are becoming common in public areas they are
a powerful information source. Camera networks have been in-
tensively used in tracking or surveillance tasks [1,2]. Most multi-
camera systems assume that the calibration and the pose of the
cameras are known, standard networks applications also imply
other highly constraining tasks such as: 3D reconstruction, frames
synchronization, etc. Baker and Aloimonos [3], Han and Kanade [4]
introduced pioneering approaches of calibration and 3D recon-
struction from multiple views. The reader may refer to [5–7] for
interesting works on camera networks and to [8–10] for synchro-
nization issues. Another limitation is that the cameras must also
be stationary, the field of view of the network is then rigidly set
and cannot be adapted according to the events in the scene. Most
of the applications implying that the use of a set of cameras are
processing information by incrementing acquired data. Every sin-
gle camera acts as an individual entity that does not necessarily
interact with the other ones. Usually the camera transfers its in-
formation regardless to the behavior of the other ones. Thus, if
the network is dense enough, obvious redundancies are unavoid-
able and resources like bandwidth,mass storage system are simply
wasted. One can expect to overcome these problems by coordinat-
ing smartly the efforts of each camera relying on themain idea that
they are forming a unique vision sensor. It is also unreasonable
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to use raw images, to avoid unnecessary data transfer within the
network. Data compression methods preserving relevant informa-
tion should then be used. Scenes can be described using their con-
tents relying on lines and edges to build geometric models from
images [11]. In other cases, visual features can be merged with
other modalities such as ultrasound sensors [12] to introduce ro-
bustness. Several aspects of the environment can also be extracted
from images like walls, doors and vacant spaces [13]. Recent works
on bag-of-features [14] representations have become popular, as
they introduce geometry-free features to characterize local subim-
age using statistical tools.
It is often constraining to use camera networks as the high

number of sensors needs permanent external tuning usually per-
formed by a human operator. The aim of this paper is to introduce
a geometry-free method that allows camera networks systems to
estimate their topology and auto-organize their own activities ac-
cording to the content of the scene and the task to be achieved.
The paper introduces a common description visual language used
by all cameras to exchange information about scenes. A sampling
method of acquired images into subimages combined with bag-of-
feature allowing their codification is presented. In a second stage, a
multi-layer data reduction architecture is introduced, it is inspired
by the statistical organization of the human retina [15]. This con-
vergent structure as will be seen allows to remove redundancies.
Finally a functional layer gathers cameras as single visual entities
performing identified tasks.
This paper is organized as follows: in the next section, themulti-

layer coding is presented. Each transition from the lowest stage
to the higher one is detailed. In the third section we show that
geometric structures can be recovered from such coded camera
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Fig. 1. Planar representation of the cameras’ location in 3D onto a plane
representing the first layer ν0 .

network: both cameras relative positions and scene object local-
ization can be estimated up to some metric properties. In the last
section, experimentations are tested on real images and results are
provided.

2. Multi-layer image coding

To allow an easier handling of the camera network and the
location of cameras, a planar topology of the network is introduced.
As shown in Fig. 1 the relative position of the cameras are
represented in a plane ν0 set as the first layer. The multi-layer
structure only need the coarse topology of the camera network
(i.e. knowing which cameras are direct neighbors). We assumed in
this section that this topology is known. The layer ν0 deals with a
planar representation of the camera network. Each camera is only
placed relatively to its neighbors without any metric position.
In what follows ν j is a plane at level j and ν ji will represent its

ith element.

2.1. From acquired images to codified images (ν0 to ν1)

The goal of this section is to sample acquired images into
representative patches. Eachpatch aswill be seenwill be compared
to a codebook, and a codified image is produced. It is important
to notice that the codebook is the same for all cameras, allowing
further comparisons.

2.1.1. Characterizing texture
Texture can be measured using different approaches. In what

follows we choose to use a measure similar to [16]. It relies on the
computation of a histogram of the difference between the value of
pixels of images. Given an image I , each value of its histogram of
differences hI is given by:

hI(i) =
x6=x′∨y6=y′∑
x,y,x′,y′∈I

diff(I, x, y, x′, y′, i), i ∈ [0, 255]

with

diff(I, x, y, x′, y′, i) =
{
1 if |I(x, y)− I(x′, y′)| = i
0 else.

In a second stage, the histogram hI is normalized, to ensure an in-
variance according to the size of I .

2.1.2. Generating codebooks
Let Fz(I) be a function allowing the decomposition of an image

I into several textured patches:

Fz(I) = {z0, z1, . . . , zn} with I =
n⋃
i=0

zi.

Let T = {hz0 , hz1 , . . . hzn} be the set containing all texture
descriptors of patches zi of I . The idea is to sample T to reduce
the number of descriptors to m ≤ n. We then add to T a metric

(2)
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Fig. 2. Example of decomposing an image into patches. Extracted patches are
compared to a uniform patch and sorted according to the complexity of their
texture. The reference patch is set to 0 on axis h′ . The mahalanobis distance is used
as the metric of comparison. Example of patches from the less (1) textured to the
more textured (3) are shown. The patch shown in (2) contains a light reflection that
is assimilated to texture after normalization.

function expressed by dist(hzi , hzj) and a reference texture patch
href. The reference patch is set to a patch containing a single
color, corresponding to a uniform area. In a second stage all the
representation of patches contained in T are compared to href and
sorted, from the less to themore textured. The set Ts corresponding
to the ordered set T becomes:

Ts = {href, h′z0 , h
′

z1 , . . . h
′

zn}

with dist(href, h′zi) ≤ dist(href, h
′

zj) if i < j.

An example of Ts is given by Fig. 2, where for a better
understanding a simple object is considered.
The mahalanobis distance is used as a metric function and is

set so for the rest of the paper. At this point, Ts is then sampled
intom areas. For each area, only the median patch is selected. The
resulting selection gives the codebook V :

V = {href, h′z0 , h
′

z1 , . . . h
′

zm}, V ⊂ Ts
that corresponds to the most representative patches.

2.1.3. Decomposing images into known patches of V
Let Iacq be an acquired image, Iacq is decomposed into zacqi

patches. Each computed patch must be compared to the content
of V , we then set a function Reco that transforms the patches of
acquired images into patches of the codebook V :

Reco : P × C → C
(zacqi , V ) 7−→ Reco(zacqi , V )= V if hzacqi ∈ V

= V ∪ hzacqi otherwise.

whereP is the set of all patches, and C the set of all codebooks.
In case a newpatch is detected, it is added to the codebook as a new
entry. The acquired image Iacq is then codified using the patches of
the codebook, the resulting image Icodi given by:

Icodi ∈ ∪Reco(zacqi , V ). (1)

2.1.4. Optimal decomposition of images
An efficient decomposition must produce an optimal and

possibly unique partitioning of images. In addition it would be
interesting to produce less patches, but of variable size so that they
can cover homogeneous texture zones.
In order to achieve an optimal generation of patches, a

quadtree-like algorithm is set up. The quadtree algorithm cuts re-
cursively images into subimages. Starting from the initial image,
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