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HIGHLIGHTS

A pseudoinverse weaker than the Moore-Penrose pseudoinverse is used for redundancy solving.
Formal compact solution including projector onto null space is developed.

The method can be applied for optimizing a criterion or multiple task performance.

A redundancy degree of 1 induces very simple expression of the projector onto null space.

A general inverse model is given for any nR-planar robot whatever n.
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Redundancy solving of robot-limbs is generally made at the velocity level by means of sophisticated
matrix tools. We attempt to develop an alternative approach based on a right-inverse of the robot Jacobian
which is not the Moore-Penrose inverse with, as a goal, to generate closed-form and compact expressions
of the joint velocities. Considering the definition of the determinant of a rectangular m x n matrix (m < n)
as the sum of its m x m minors, and using the weak inverse proposed by the Indian mathematician Joshi we
show that it is possible to derive a general expression of its projector onto null space. These mathematical
tools are applied to a new approach for redundancy solving including optimization criteria and multiple
task performance. It is also shown that the combinatorial explosion peculiar to the method for highly
redundant robots can be controlled in the case of some classes of modular robotic structures. Simulation
results are reported for the regional redundant structure of a 7R-robot arm and a 30 d.o.f. planar elephant
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1. Introduction

Most of the methods for solving redundancy of robot limbs are
applied at a velocity level and, because this approach is mainly
based on the Moore-Penrose pseudoinverse of the robot Jacobian
and the possibility to arbitrarily choose the associated projection
operator for avoiding singularities or obstacles [1,2], the solution
to the problem is essentially expressed in terms of operation on
matrices. The increasing computing power of robot controllers
has made possible the on-line implementation of such methods
although mathematical forums sometimes emphasized the com-
putational burden involved by the use of ‘pinv’ or ‘pinv2’-type
algorithms [3]. Without renouncing to solve the problem at the

* Correspondence to: Institut National de Sciences Appliquées, University of
Toulouse, 31077 Toulouse, France.
E-mail address: bertrand.tondu@insa-toulouse.ft.

http://dx.doi.org/10.1016/j.robot.2015.08.003
0921-8890/© 2015 Elsevier B.V. All rights reserved.

velocity level, we would like, in this study, to analyze the possible
relevance of solving the problem with a pseudoinverse “weaker”
than the Moore-Penrose pseudoinverse. To the best of our knowl-
edge, no attempt has still been made to consider weak inverses
for solving redundancy in robotics although, as noted by Lovass-
Nagy, Miller and Powers [4], the use of generalized inverses weaker
than the Moore-Penrose pseudoinverse can lead to simpler solu-
tions in inverse linear problems. We expect, by this new mean, to
be able to exhibit closed-form joint velocity expressions for so-
lution to the inverse problem instead of a numerical matrix for-
mulation. This look for new ways in the determination of compact
formal solutions to the inverse kinematic problem for serial-chain
robot-limbs is motivated by two ideas. First it is by a theoretical—
and it could even be said esthetical aim. Because the determi-
nant of a square matrix is independent on the choice of the
base in which are expressed its column vectors, it is possible to
choose a “good” frame and then to derive the “optimal” compact
form for the robot Jacobian with respect to this frame. In their
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classic book, Gorla and Renaud [5] can so write the Jacobian of
main 6R-robot structures in a very compact form. Even after choos-
ing the “right” frame, the general Moore-Penrose expression for a
redundant robot, J* = JT(JJT)~" where J is the robot Jacobian,
generally, prevents such a possibility due to matrix operations its
computation imposes. But this look for compactness for the inverse
velocity solution has also a practical goal. It is well known that solv-
ing the inverse problem at the velocity level suffers an integration
problem: because joint position is integrated from joint velocity,
numerical errors are summed up at each sampling time. If we were
able to solve the joint velocity problem with compact real expres-
sions instead of sophisticated methods like singular value decom-
position, an obvious gain in computing time could be expected and,
without the velocity integration problem disappears, it would be
reduced by the possibility to choose a shorter sampling time. This
last technical problem will not be addressed in this paper where
we want, essentially, to discuss the possibility of a relevant alter-
native to the Moore-Penrose pseudoinverse. Section 2 is devoted
to the mathematical aspect of the problem. After a first problem
analysis in the frame of generalized inverses, we introduce an in-
tuitive definition of the determinant of a rectangular m x n matrix
(m < n)and we show how the right inverse proposed by the Indian
mathematician Joshi is a good candidate for formal computation
of a rectangular inverse and can lead to a very interesting expres-
sion for its associated projector onto null space. In Section 3, these
mathematical tools are applied for solving redundancy including
criteria optimization and multiple tasks performance. The scope of
application of the proposed method is analyzed, especially with re-
spect to the degree of redundancy of the robot.

2. Solving the redundancy by means of a weak inverse

2.1. Right inverse versus left inverse

Let us start recalling the classical definition of a generalized
inverse of any m x n matrix M as being the matrix X satisfying
at least the first or the second of the four following equations:

MXM =M (a)
XMX =X (b)
MX) = MX (c) (1)

XM =xM (d).

The Moore-Penrose pseudoinverse is the unique matrix satisfy-
ing the four equations. A matrix satisfying only some of these four
equations is said to be a {iy, i, i3}-inverse where 1 < i; < i, <
i3 < 4 and any solution of this class will be noted M1 22- 3) Let us
consider alinear equation v = Mu where M is a m X n-matrix, uis a
vector of R" and v is a vector of R™. The Moore-Penrose pseudoin-
verse M solving this equation is called the best approximate solu-
tion or minimum norm least-squares solution. This means it is the
only solution sharing the property of least-squares approximation
peculiar to all {1, 3}-inverses and the property of minimum-norm
peculiar to all {1, 4}-inverses [6]. In the case of a redundant robot
with n degrees of freedom, moving in a m-dimensional operational
space with m < n, the Moore-Penrose pseudoinverse of the robot
Jacobian is so able to generate the minimum-norm solution when
the robot task has a multiplicity of solutions and the least-squares
solution when the datum of an additional task makes the linear sys-
tem inconsistent. If we give the Moore-Penrose pseudoinverse up,
the choice of an alternative pseudoinverse can be either based on
the choice of a {1, 3}-inverse or a {1, 4}-inverse with, respectively,
looking for a least-squares solution or a minimum-norm solution.
Moreover, it is important to remember the following characteri-
zation of the sets of {1, 3} and {1, 4}-inverses respectively noted

M({1, 3} and M{1, 4} [6, Chapter 2]—we voluntarily limit our ap-
proach to real matrices:

M{1,3} = {M"P +d, - M M)z,
with Z is any n x m matrix} @)
M{1,4} = {M" +z(d, — MM"Y),

with Z is any n x m matrix} .

It is also possible to distinguish right inverses from left inverses: a
right inverse of M is any n x m-matrix M" verifying MM" = I,,; it is
easy to check that M" is a {1, 2, 3}-inverse and so a {1, 3}-inverse.
Alternatively, a left-inverse of M is any n x m-matrix M' verifying
M'M = I; it is easy to check that M'is a {1, 2, 4}-inverse and so a
{1, 4}-inverse. Because our challenge consists in looking for a new
class of weak inverses able to compete in some extent the classic
formula J* = JT(JJ")~" we propose to approach the issue using
the distinction we just made between right and left inverses. And
because we have in mind the important role of least-squares so-
lution property peculiar to {1, 3}-inverses, we focus our look on a
right-inverse with the hope that it will also be able to generate a
solution close to the minimum-norm solution. On the other hand,
because our work was initially inspired by the search for determi-
nant of rectangular matrices, we propose to write the looked right-
inverse as follows:

M" = Co(M)"/ det(M) (3)

where det(M) is a determinant-like function equal to zero if and
only if rank(M) < m and Co(M) is like a matrix of cofactors. This
is this right inverse that we now define.

2.2. Joshi’s weak inverse and its use in linear systems solving

Matrix determinant is a fundamental algebra notion essentially
associated to square matrices. Attempts have been made to extend
this notion to non-square matrices. If no global theory exists and,
may be, would be meaningless in the general case of a rectangular
matrix, the problem can more easily be approached if it is limited
to m x n matrices with m < n. In this case, the matrix M
can be read as a sequence of n vectors (aq, as, ..., a,) belonging
to a m-dimensional vector space. An intuitive way to define a
determinant associated to this vector sequence consists to consider
all m x m minors by a sign, computed from their components.
Radic [7] proposed at his time a first definition of the determinant
of such rectangular matrices. We will however prefer a more recent
definition proposed by Joshi [8] for which it is easy to show that it
is equivalent to the simple form:

det(M) = Z

1<ij<ip<--<ipm=<n

det(a;,, aj,, ..., @) (4)

i.e. the sum of all (:1) m x m minors of the ordered sequence of the

matrix n column vectors of the matrix.! In the remaining, we will
adopt this definition which, obviously, includes the case of a square

Teis possible to geometrically justify this definition of the determinant of a
rectangular matrix by means of zonotope theory. Indeed, each considered minor
corresponds to the determinant of a set of m vectors defined in a m-dimensional
vector space. According to the theory of square matrices, any determinant
can be geometrically interpreted as the signed volume of the corresponding
m-parallelepiped whose generating vectors are the vectors of the minor. In this
same m-dimensional space, the n vectors of the rectangular matrix can be viewed
as the generating vectors of a geometric figure called a zonotope [9] i.e. a set of
m-parallelepipeds gathered in such a way that all “faces” are parallel two by two.
The volume of this zonotope is not equal to the considered determinant but the
volume of each “cell” of the zonotope is equal to one of its m x m minor by a sign.
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