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a b s t r a c t

This paper examines the problem of pattern-preserving path following control for unicycle teams with
time-varying communication delay. A key strategy used here introduces a virtual vehicle formation
such that each real vehicle has a corresponding virtual vehicle as its pursuit target. Under an input-
driven consensus protocol, the virtual vehicle formation is forced to stay close to the desired vehicle
formation; and a novel controller design is proposed to achieve virtual leader tracking for each vehicle
with constrained motion. It is shown that, by the proposed strategy, the pattern can be preserved if the
formation speed is less than some computable value that decreases with increasing size of delay, and the
exact desired formation pattern can be eventually achieved if this speed tends to zero.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Formation control design for multi-vehicle systems continues
to attract great attention due to the needs in many industrial
and military applications such as surveillance, search, rescue and
terrain mapping. Trajectory tracking and path following with
formation maintenance are two problems under wide study. In
trajectory tracking (resp. path following), one vehicle or some
geometric characteristics of a vehicle team is required to track
a virtual vehicle moving on the given trajectory (resp. to follow
a given path). With the formation maintenance requirement,
the geometric pattern of a vehicle team needs to be (globally)
asymptotically stabilized at a desired one, which either is given
by the relative positions among the vehicles, or maps to a value
(e.g. global or local minimum) of some given function (e.g. artificial
potential function). For real-world applications, theremay be some
extra control objectives which need to be achieved. For instance,
inter-vehicle and vehicle–obstacle collisions should be avoided in
the transient of the tracking or path following.

Several types of strategies have been proposed for the control
purposes stated above during the past few years. The authors of
[1–9] investigated leader–follower structure based strategies,
where the vehicle group is layered and each vehicle in some layer
has a vehicle in the upper layer as the local leader to follow; and the
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only vehicle in the top layer is required to track a given trajectory
or follow a given path when the group is performing formation
tracking or a path following task. Artificial potential function (APF)
based approaches were firstly employed for the swarming and
flocking control of multiple vehicles with holonomic dynamics
[10–14]. These approaches have recently proved useful also for
nonholonomic vehicle teams [15–19]. By the APF based strategy,
each vehicle in a team tries to follow the direction specified by
the negative gradient of corresponding APF component, and the
geometric pattern of the team almost converges to the one that
maps to a local minimum of the collective APF. For holonomic
vehicles, this following can be exactly realized at any time; but it
may only be achieved asymptotically for nonholonomic vehicles.
The main difficulty of the APF based method is to design an APF
without local minima which correspond to undesirable patterns.
Another important method for formation control of multi-vehicle
systems is based on the use of the so called virtual structure,
which is composed of virtual leaders playing the role of reference
targets for the real vehicles. These virtual leaders can be in rigid
configurations, interactwith each other for some formation control
purposes, or interconnect their motions with those of the real
vehicles. Early work along this line can be found in [20,21]. Recent
years have witnessed much effort in applying this strategy to
trajectory tracking and path following of multiple vehicles with
various types of dynamics [22–25,19,26,27]. See [28] for more
references on the subject of formation control.

Although many previous works have studied the formation
control of nonholonomic vehicles, very few of them dealt with
data transmission delay in inter-vehicle communication channels.
Among the latter, [25] showed a decentralized strategy in which
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each vehicle follows a path traced out by a virtual leader,
and the desired pattern of the vehicles can be eventually
achieved if the individual coordination states reach consensus.
In [29], the authors designed distributed control laws based
on backstepping techniques such that a team of vehicles are
forced to asymptotically form a desired pattern, with respect
to a global coordinate system, whose centroid moves along a
desired trajectory. An appealing feature of the approach is that the
desired trajectory only needs to be available to a portion of the
vehicles. Note that in both the papers the communication delay is
considered time-invariant, and the topology of the communication
graph of the vehicle team is not related to its geometric pattern.

In this paper, we address, for the first time, the problem of how
to drive a nonholonomic vehicle team to move along some given
path with a preserved pattern and a specified formation speed
profile in the presence of time-varying communication delay. The
pattern of the vehicle team is said to be preserved if, roughly
speaking, the error between it and the desired one remains in
a small range. Considering distance-dependent communication
capability of the vehicles, we assume that the communication
network of the vehicle team is fixed, bidirectional and connected if
the pattern is preserved. Our main contribution is to give a control
strategy by which the pattern is preserved if the desired formation
speed is upper bounded, where the bound is shown inversely
proportional to the size of delay. The strategy can deal with both
the cases that the desired formation speed is bounded away from
zero and converges to zero asymptotically.

Applying a virtual structure framework, we assign each vehicle
with a path reference point (PRP) on the given path, based on
which a virtual lead is defined. The formation of the virtual leaders,
called the virtual formation, coincides with the desired vehicle
formation if all the PRPs reach agreement. The proposed strategy
can be outlined as follows. On one hand, an input-driven consensus
protocol is employed to keep PRPs having small differences and
proceeding roughly with the desired formation speed. In other
words, the resulting virtual formation remains close to the desired
vehicle formation. On the other hand, under the action of a
control law derived from the APF based approach, each vehicle
asymptotically tracks its virtual leader with the tracking error
constrained inside a pre-defined range. As a consequence, the
real vehicle formation is always close to the virtual formation.
The combination of the above two points guarantees that the
actual vehicle formation has a small error with respect to the
desired one. Last but not least, by our approach, when the desired
formation speed converges zero (e.g., in the scenario of point-to-
point migration) the team of vehicles eventually form exactly the
desired formation.

2. Preliminaries

Throughout this paper, we use N, R+, Z+ to denote the sets
of natural numbers, nonnegative real numbers and nonnegative
integers. ∥x∥ denotes the Euclidean norm of the vector x ∈ Rn

for any n ∈ N. In addition, we use 0E to represent the function
mapping any point in an interval E ⊆ R to 0 ∈ RN , where the
dimension N ∈ N can be identified from the context.

2.1. Graph theory

A directed graph G(V, E) consists of a vertex set V and an arc,
or directed edge, set E ⊂ V × V . For any i, j ∈ V , the ordered pair
(i, j) ∈ E if and only if i is a neighbor of j. Vertex i is said to have
a self edge if (i, i) ∈ E . A directed path, with length n − 1, from
vertex i to j is a sequence of distinct vertices v1, v2, . . . , vn, where
n ≥ 1, v1 = i, vn = j and (v1, v2), . . . , (vn−1, vn) ∈ E . A directed
graph is said to have a spanning tree if and only if there exists a

Fig. 1. An example of artificial potential functions.

vertex i ∈ V , called the root, such that there is a directed path from
i to any other vertex. A graph G(V, E) is undirected if and only if
for any i, j ∈ V , (i, j) ∈ E implies (j, i) ∈ E . A path in an undirected
graph is defined analogously as a directed path in a directed graph.
An undirected graph is said to be connected if and only if there is a
path between anypair of vertices. The degree di of vertex i ∈ V in an
undirected graph G(V, E) is defined as di = Card({j : (i, j) ∈ E});
and the value of maxi di is called themaximum degree of the graph.
The diameter of a connected undirected graphG(V, E) is defined to
be maxi,j∈V Lij, where Lij is the minimum length of any path from
vertex i to vertex j. In addition, for the graph G(V, E) with time-
dependent edge set E(t), we use


t G(V, E(t)) to represent the

graph composed of node set V and edge set


t E(t). See [30] for
more basics in graph theory.

2.2. Artificial potential function

An artificial potential function V (·, r) : [0, r) → [a, ∞), with
r > 0 and a ∈ R+, used in this paper has the following properties:

(a) V ∈ C2;
(b) limx→r V (x, r) = ∞;
(c) ∀ϵ ∈ (0, r), ∃ δ > 0 such that V ′(x, r) ≥ δ, ∀x ∈ [ϵ, r).

In the following, we use V ′
x and V ′′

x to denote the first and second
derivatives of the function V (x, r) with respect to x. An example of
artificial potential functions is depicted in Fig. 1.

3. Pattern preserving path following

3.1. Problem statement and description of the control strategy

The path to be followed by the vehicle team is a plane curve
represented by the function q : R → R2. We use xq(s), yq(s)
to denote the first and second components of q(s) respectively,
i.e., q(s) = (xq(s), yq(s)). Physically, xq(s), yq(s) are the x- and
y-coordinates of the point corresponding to s on the path with
respect to some right-handed Cartesian coordinate system Σg .
Regarding the smoothness of the path, we make the following
Assumption 1:

Assumption 1. The derivatives x′
q(s), y′

q(s), x′′
q(s), y′′

q(s), x′′′
q (s),

y′′′
q (s) exist and are bounded, and there exists a positive real

constant c such that


(x′
q(s))2 + (y′

q(s))2 ≥ c , for any s ∈ R.

An example of such a path is xq(s) = 10 cos(0.1s) and yq(s) =

10 sin(0.1s). Assumption 1 will be mainly used to ensure some
properties of themotion of the virtual leaders that the real vehicles
are supposed to track.
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