
Growing neural gas efficiently

Daniel Fišer n, Jan Faigl, Miroslav Kulich

Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 6 Prague 166 27, Czech Republic

a r t i c l e i n f o

Article history:

Received 28 September 2011

Received in revised form

30 July 2012

Accepted 7 October 2012

Communicated by B. Hammer
Available online 14 November 2012

Keywords:

Self-organizing map

Growing neural gas

Nearest neighbor search

3-D surface reconstruction

a b s t r a c t

This paper presents optimization techniques that substantially speed up the Growing Neural Gas (GNG)

algorithm. The GNG is an example of the Self-Organizing Map algorithm that is a subject of an intensive

research interest in recent years as it is used in various practical applications. However, a poor time

performance on large scale problems requiring neural networks with a high amount of nodes can be a

limiting factor for further applications (e.g., cluster analysis, classification, 3-D reconstruction) or a

wider usage. We propose two optimization techniques that are aimed exclusively on an efficient

implementation of the GNG algorithm internal structure rather than on a modification of the original

algorithm. The proposed optimizations preserve all properties of the GNG algorithm and enable to use

it on large scale problems with reduced computational requirements in several orders of magnitude.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Growing Neural Gas (GNG) [1] is one of the Self-
Organizing Map (SOM) [2] algorithms for unsupervised learning.
Unsupervised learning (or sometimes called learning without
teacher) is a learning method that works solely with an input
data and has no information about the desired output. Input data
are consecutively presented to SOM in a form of input signals and
SOM changes its topological structure to fit to the input data
using its own specific mechanism – self-adaptation. The GNG and
other growing neural networks (such as Growing Cell Structures
[3], Growing Grid [4], etc.) use furthermore a growing mechanism
for a gradual adaptation and a self adjusting of its own size. The
growing neural network starts in some minimal state (e.g., with
some minimal number of neurons in the network), which is
adapted to input data. Then, it grows (increases its size) and
adapts again. This cycle is repeated until a desired resolution of
the neural network is reached.

SOM algorithms are used in various applications such as vector
quantization [5–7], cluster analysis [1,3,8–10], classification [11,6],
and 3-D reconstruction [12–15], but a poor time performance,
especially on large scale problems, can be a limiting factor for further
applications or a wider usage. Although several approaches addres-
sing the computational requirements have been proposed [16,17,7],
we have found out that the GNG algorithm can be implemented in a
more efficient way than a direct implementation of the original
description. Moreover, based on our application of the GNG algorithm

in a real problem of 3D reconstruction1 [18], we identified the most
time consuming operations of the GNG algorithm and proposed
optimization techniques significantly reducing the real required
computational time. Hence, the goal of this paper is to show how
to overcome the issue of the poor time performance and how to
implement the GNG algorithm with optimizations providing a
significant speedup.

The paper is organized as follows. First, a detailed description
of the GNG algorithm is presented in the next section to identify
and understand its most time-consuming parts. In Section 3, an
overview of the related work is presented. Sections 4 and 5 are
dedicated to description of the speedup techniques proposed. The
real benefit of the techniques is evaluated in Section 6, the
discussion of the experimental results is presented in Section 7,
and the concluding remarks are presented in Section 8.

2. The growing neural gas

A GNG network structure is a graph consisting of a set of nodes
and a set of edges connecting the nodes. Each node has associated a
weight vector corresponding to the node’s position in the input
space and an error variable intended for identification of the parts of
the network least adapted to input signals. Each edge is unambigu-
ously identified by a pair of nodes. The schema of the GNG is
depicted in Algorithm 1 with supporting functions in Algorithm 2
and notation used through this paper can be seen in Table 1.

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.neucom.2012.10.004

n Corresponding author.

E-mail addresses: danfis@danfis.cz (D. Fišer), faiglj@fel.cvut.cz (J. Faigl),

kulich@labe.felk.cvut.cz (M. Kulich).

1 Videos with visualization of the 3-D reconstructions are available at http://

www.youtube.com/watch?v=yoPcZpCPfyI, http://www.youtube.com/watch?v=oX

x3oJ8omOQ, http://www.youtube.com/watch?v=j_t8LkAXS9Q.

Neurocomputing 104 (2013) 72–82

www.elsevier.com/locate/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2012.10.004
dx.doi.org/10.1016/j.neucom.2012.10.004
dx.doi.org/10.1016/j.neucom.2012.10.004
mailto:danfis@danfis.cz
mailto:danfis@danfis.cz
mailto:xfaigl@labe.felk.cvut.cz
mailto:kulich@labe.felk.cvut.cz
http://www.youtube.com/watch?v=yoPcZpCPfyI
http://www.youtube.com/watch?v=yoPcZpCPfyI
http://www.youtube.com/watch?v=oXx3oJ8omOQ
http://www.youtube.com/watch?v=oXx3oJ8omOQ
http://www.youtube.com/watch?v=j_t8LkAXS9Q
dx.doi.org/10.1016/j.neucom.2012.10.004

The GNG works as follows. After initialization, which places two
randomly generated nodes into a network, two main phases are
alternating until a selected stopping criterion is met. The first phase
(‘‘self-organizing’’) is adaptation, which is performed in l steps. In
each step, random input signal is generated and the neural network
adapts itself to it: a connection between two nodes nearest to the
input signal is strengthened (or created if it does not exist), then the
nearest node and all its topological neighbors (nodes connected
directly to the node by an edge) move towards the input signal and
the nearest node’s error is increased. This helps to identify areas
where nodes are not sufficiently adapted to input signals. After that,
the aging mechanism of edges is triggered – those edges that were
not strengthened for a long time (the age of the edge is higher than
Amax) are removed from the network. In the last step of the
adaptation, an error of each node is decreased. Using this mechanism
the neural network ‘‘forgets’’ old errors and thus it can focus on the
most recent ones.

In the second phase (‘‘growing’’), a new node is created and
connected into the network. The node’s error is used for an
identification of the area where the adaptation was least success-
ful – the node with the largest error and its neighbor with the
largest error are found. A new node is created at the halfway
between them. The errors of those nodes are decreased.

Algorithm 1. The original growing neural gas algorithm.

GNG()
1 initialize the set G by two nodes with random weight

vectors
2 c’0
3 s’0
4 x
!

’ random input signal
5 s’sþ1

6 n,m’ TWO_NEAREST_NODES(x
!

)
7 foreach n in Nn
8 An,n’An,nþ1
9

INC_ERROR (c, s, n, Jw
!

n� x
!

J2)
10 w
!

n’w
!

nþEbð x
!
�w
!

nÞ

11 w
!

n’w
!

nþEnð x
!
�w
!

nÞ, 8nANn
12 create an edge between n and m if it does not exist
13 An,m’0

14 foreach a,b in all edges in map
15 if An,n4Amax

16 delete edge connecting n and n and all nodes w/o
edges

17 if s¼ l
18 GNG_NEW_NODE(c)
19 c’cþ1
20 s’0
21 DEC_ALL_ERROR(b)
22 if stopping criterion is met
23 terminate algorithm
24 else
25 go to step 4.

Algorithm 2. Functions for the original GNG.

INC_ERROR(c, s, n, v)
1 En’Enþv

DEC_ERROR(c, n, a)
1 En’aEn

SET_ERROR(c, n, v)
1 En’v

DEC_ALL_ERROR(b)
1 En’bEn, 8nAG

LARGEST_ERROR (c)

1 q’ arg maxnAGEn

2 f’ arg maxnANq
En

3 return q, f

Algorithm 3. The growing neural gas algorithm.

GNG()
1 initialize the set G by two nodes with random weight

vectors
2 c’0
3 while stopping criterion is not met
4 for s’0 to l�1
5 x

!
’ random input signal

6 GNG_ADAPT(c, s, x
!

)
7 GNG_NEW_NODE(c)
8 c’cþ1

GNG_ADAPT(c, s, x
!

)
1 n,m’ TWO_NEAREST_NODES (x

!
)

2
INC_ERROR(c, s, n, Jw

!
n� x
!

J2)
3 w
!

n’w
!

nþEbð x
!
�w
!

nÞ

4 w
!

n’w
!

nþEnð x
!
�w
!

nÞ, 8nANn
5 create an edge between n and m if it does not exist
6 An,m’0

7 foreach n in Nn
8 An,n’An,nþ1
9 if An,n4Amax

10 delete edge connecting n and n and all nodes w/o
edges

11 DEC_ALL_ERROR(b)

GNG_NEW_NODE(c)
1 q,f’ LARGEST_ERROR(c)
2

w
!

r’
w
!

qþw
!

f

2

3 delete an edge connecting q and f and create two new edges
between r and q and between r and f

4 DEC_ERROR(c, q, a)
5 DEC_ERROR(c, f, a)
6 SET_ERROR(c, r, ðEqþEf Þ=2)

2.1. An alternative formulation of the GNG algorithm

We had observed that the original description of the GNG
made by Bernd Fritzke in [1] can be reformulated without
changes of the algorithm behavior, i.e., the new algorithm works
exactly in the same way as the original one. The reformulation
can be considered as ‘‘cosmetic’’; however, it allows a more
straightforward application of the proposed optimizations of the
time consuming operations. Thus, the alternative formulation helps
in further explanation of the speedup techniques proposed, and

Table 1
Notation.

G The set of all nodes in the network

n, m Nodes

Nn The set of all topological neighbors of node n
w
!

n The weight vector of a node n
En The error of a node n
An,m The age of the edge between the nodes n and m
c The cycle counter

s The step counter

D. Fišer et al. / Neurocomputing 104 (2013) 72–82 73

Download	English	Version:

https://daneshyari.com/en/article/412445

Download	Persian	Version:

https://daneshyari.com/article/412445

Daneshyari.com

https://daneshyari.com/en/article/412445
https://daneshyari.com/article/412445
https://daneshyari.com/

