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a b s t r a c t

Novel biomarkers can be discovered through mining high dimensional microarray datasets using

machine learning techniques. Here we propose a novel recursive gene selection method which can

handle the multiclass setting effectively and efficiently. The selection is performed iteratively. In each

iteration, a linear multiclass classifier is trained using 1-norm regularization, which leads to sparse

weight vectors, i.e., many feature weights are exactly zero. Those zero-weight features are eliminated in

the next iteration. The empirical results demonstrate that the selected features (genes) have very

competitive discriminative power. In addition, the selection process has fast rate of convergence.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Discovery of novel biomarkers is one of the most important
impetuses driving many biological studies including biomedical
research. In this post-genomics era, many high throughput
technologies such as microarrays have been applied to measure
a biological system ranging from cell to tissue to whole animal. In
the last decade, environmental scientists, particularly ecotoxicol-
ogists, have increasingly applied omics technologies in the hunt
for biomarkers that display both high sensitivity and specificity.
However, it is still a big challenge to sieve through high dimen-
sional data sets and look for biomarker candidates that meet high
standards and sustain experimental validation.

Previously, we developed an integrated statistical and machine
learning (ISML) pipeline to analyze a multiclass earthworm gene
expression microarray dataset [15]. As a continuation to this
effort of biomarker discovery, here we developed a new feature
selection method based on 1-norm regularization.

In machine learning, feature selection is a technique of seeking
the most representative subset of features. It is the focus of
research in applications where datasets have dramatic amounts
of variables, e.g. text processing and gene expression data analysis.
When applied to gene expression array analysis, the technique
detects the influential genes by which biological researchers could

discriminate normal instances from abnormal ones, and therefore,
facilitates further biological research or judgments.

We only focus on supervised learning in this paper, which
means a label is given for each instance. Unsupervised and semi-
supervised learning could be found in other literatures [25,16,22].
Feature selection algorithms roughly fall into two categories,
variable ranking (or feature ranking) and variable subset selec-
tion [9]. The latter essentially is divided into wrapper, filter, and
embedded methods.

Variable ranking acts as a preprocessing step or auxiliary
selection mechanism because of its simplicity and scalability. It
ranks individual features by a metric, e.g. correlation, and eliminates
features that do not exceed a given threshold. Variable ranking is
computational efficient because it only computes feature scores.
Nevertheless, this method only focuses on the predictive power
of individual features. It is prone to the selection of redundant
features.

Variable subset selection, on the other hand, attempts to select
subsets of features that, jointly, produce good prediction perfor-
mance. Filter methods consist of using a feature subset relevance
criterion to yield a reduced subset of features which may be used
for future prediction. Wrapper methods [13] search through
feature subset space. Each subset is applied to a certain machine
learning model and assessed by the learning performance. In
these methods, learning models act as black boxes. Embedded
approaches [14] implement feature selection in the process of
learning. While wrapper methods search the space of all feature
subsets, the searching step in embedded methods is guided by the
learning algorithm. This guidance could be obtained from esti-
mating changes in the objective function by adding or removing
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features. For example, Guyon et al. [10] proposed Support Vector
Machine Recursive Feature Elimination (SVM-RFE) algorithm to
recursively classify the instances by the SVM classifier and
eliminate the feature(s) with the least weight(s). The number of
features to be eliminated in each iteration is ad hoc. Moreover,
there is no firm conclusion about when to terminate the recur-
sive steps.

Most feature selection in the literature is designed for binary
problems. When extended to real-life multiclass tasks, combining
several binary classifiers are typically suggested, such as one-
versus-all and one-versus-one [23]. For situations with k classes,
one-versus-all constructs k binary classifiers, each of which is
trained with all the instances in a certain class with positive labels
and all other examples with negative labels. It is computationally
expensive and has highly imbalanced data for each binary
classifier. On the other hand, one-versus-one method constructs
kðk�1Þ=2 binary classifiers for all pairs of classes. An instance
is predicted for the class with the majority vote. Similar to the
one-versus-all approach, the one-versus-one approach has heavy
computational burden. Platt et al. [20] proposed a directed acyclic
graph SVM (DAGSVM) algorithm whose training phase is the
same as one-versus-one by solving kðk�1Þ=2 binary problems.
However, DAGSVM uses a rooted acyclic graph to make a decision
from kðk�1Þ=2 prediction results. Some researchers proposed
methods solving multiclass tasks in one step: build a piecewise
separation of the k classes in a single optimization. This idea is
comparable to the one-versus-all approach. It constructs k classi-
fiers, each of which separates a class from the remaining classes,
but all classifiers are obtained by solving one optimization
problem. Weston and Watkins [27] proposed a formulation of
the SVM that enables a multiclass problem. But, solving multi-
class problem in one step results in a much larger scale optimiza-
tion problem. Crammer and Singer [5] decomposed the dual pro-
blem into multiple optimization problems of reduced size and
solved them by a fixed-point algorithm. A comparison of different
methods for multiclass SVM was done by Hsu and Lin [12].

A multiclass optimization cost function typically comprises
two parts, empirical error and model complexity. The model
complexity is usually approximated by a regularizer, e.g. 2-norm
or 1-norm [3]. The use of 1-norm was advocated in many applica-
tions, such as multi-instance learning [4], ranking [19] and
boosting [6], because of its sparsity-favoring property. Several
literatures discussed the multiclass problem based on 1-norm
regularization and various loss functions for the empirical error.
For example, Friedman et al. [8] introduced 1-norm into multi-
nomial logistic regression which is capable of handling multiclass
classification problems. Bi et al. [2] chose E-insensitive loss func-
tion. Liu and Shen [17] defined a specific loss function c-loss that
replaces the convex SVM loss function by a nonconvex function.
Other works mainly used hinge loss with different variations
[24,26]. In this paper, the hinge loss function we apply is similar
to that in [27], but has not be used in any 1-norm multiclass work.

Feature selection under the framework of 1-norm multiclass
regularization is achieved by discarding the least significant
features, i.e., features with zero weights. The sparsity of the
weights is determined by a regularization parameter that controls
the trade off between empirical error and model complexity.
However, the selection of a proper regularization parameter is a
challenging problem. We only know the trend of tuning the
parameter to make the number of selected features smaller or
larger, but it is difficult to associate a parameter value with a
particular feature subset and at the same time achieve a high
learning performance, unless the entire regularization path is
computed. As 1-norm is non-differentiable (so is hinge loss),
calculating the accurate regularization path is difficult (some
other loss functions, such as logistic loss, have defined gradients).

Even though the regularization path is piecewise linear, path-
following methods are slow for large-scale problems. Instead of
computing an approximate regularization path, we introduce an
iterative 1-norm multiclass feature selection method that selects
a small number of features with high performance.

In this paper, we propose a multiclass 1-norm regularization
feature selection method, L1MR (Linear 1-norm Multiclass Reg-
ularization), and its simple variation SL1MR, that solve a single
linear program. An iterative feature elimination framework is
proposed to obtain a minimum feature subset. The sparsity
favoring property of 1-norm regularization enables fast conver-
gence of the iterative feature elimination process. In our empirical
studies, the algorithm typically converges in no more than ten
iterations. The reminder of the paper is organized as follows.
Section 2 proposes the 1-norm multiclass regularization. Section
3 describes the iterative feature elimination process. Section 4
demonstrates the experimental results. Conclusions are presented
in Section 5 along with a discussion of future work.

2. Learning a multiclass linear classifier via 1-norm
regularization

Consider a set of l instances (X,Y) from an unknown fixed
distribution, where XARn is the earthworm microarray gene
expression data, and output Y is the class label. In a k-category
classification task, y is coded as f1, . . . ,kg. For the earthworm data
studied in this article, k¼3 (control, TNT, RDX), n¼869 and l¼248.

Given k linear decision functions f 1, . . . ,f k where fc corresponds
to class c, each decision function is defined as f cðxÞ ¼wT

c xþbc ,
c¼ 1, . . . ,k, where, the parameters wc ¼ ½wc,1, . . . ,wc,n�

T ARn and
bc AR. We consider a winner-takes-all classification rule specified as

FðxÞ ¼ arg max
c

f cðxÞ,

which assigns input x to class FðxÞ with the highest decision value.
If the instances are separable, there exist decision functions that
satisfy

f yi
ðxiÞZ f cðxiÞ,cayi:

The above inequality is equivalent to

ðwyi
�wcÞxiþðbyi

�bcÞZ1,cayi:

To handle the non-separable cases, we introduce slack variables into
the model, i.e.,

ðwyi
�wcÞxiþðbyi

�bcÞZ1�xyi ,c
,cayi, ð1Þ

where xyi ,c
Z0 is a slack variable.

The learning of the classifier can be formulated as an optimi-
zation problem. Our goal is to seek f that minimizes the sum of
empirical error and model complexity. Empirical error can be
computed as the proportion of non-separable instances, i.e., errors
on training data, or approximated using various loss functions,
such as hinge loss, logistic loss. These loss functions were
originally defined for binary classes. Extending to multiclass case,
there are different variations. For example, [26] utilized hinge loss
function

P
cayi
½f cðxiÞþ1�þ , where ð�Þþ �maxð�,0Þ. In this paper,

we apply the hinge loss function:X
cayi

½1�ðf yi
ðxiÞ�f cðxiÞÞ�þ ,

which was introduced by Weston and Watkins [27]. This hinge
loss function has not been used in the multiclass setting with
1-norm penalty before. And it is equivalent to the slack variable
defined in (1).

Model complexity is approximated using 1-norm. Zhu et al.
[29] argued that the 1-norm regularization yields sparse results,
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