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Abstract

The nonholonomic redundancy of second-order nonholonomic mechanical systems is investigated. It has been verified that the self-motion can
be implemented demonstrably by some nonholonomic mechanical systems such as the underactuated redundant manipulators. An exponentially
stabilization control method is proposed for a class of underactuated manipulators, of which the number of actuated joints is no less than that of
the passive joints. It has been shown that this class of underactuated manipulators are completely controllable when the dynamic coupling of the
underactuated manipulators is non-degenerated and the up-boundary of the inputs is large enough. By the proposed control method, we exhibit
this class manipulators with zero weight can realize the “self-motion” as a full-actuated redundant one. As a typical application, the problem
of path tracking with suppressing vibration is investigated for the underactuated redundant manipulators. It is revealed that the vibration of the
underactuated redundant manipulator can be converted into an internal resonance that is compatible with the “self-motion”, while it leads to no
vibration at the end-effector of the manipulator. Some numerical simulations by a planar four-DOF underactuated manipulator with two actuated
joints and two passive joints show the effectiveness of the accurate trajectory control method and the value of the self-motion compatible internal
resonance.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the past, the control of nonholonomic mechanical systems
has attracted much research as a challengeable problem
in nonlinear control theory. The nonholonomic mechanical
systems have fewer dimensions of the inputs than the
dimensions of the configuration space generally. Some familiar
nonholonomic systems including mobile robots [1–4], free-
floating space robots [5], hopping robots in flight phase [6],
spherical rolling robots [7] etc. are studied extensively. The
nonholonomic constraints of these systems are first-order
differential equations with Pfaffian form generally, said to
be first-order nonholonomic systems. There are a plenty of
research reports about motion planning and control method
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related to this field, such as the sinusoid method proposed by
Murray and Sastry et al. [1–3], bi-directional method proposed
by Nakamura and Mukherjee et al. [5], and the sliding mode
control method proposed by Yang and Kim et al. [8].

Instead of the systems mentioned above, there is an-
other class of nonholonomic systems with second-order non-
integrable constraints, exampled by underactuated manipula-
tors [9–23] or some underactuated vehicles. Oriolo and Naka-
mura [9] first proved that the underactuated manipulators are
second-order nonholonomic mechanical system if the general-
ized coordinates corresponding to the passive joints were not
cyclic. Arai et al. [10–13] also studied the control problem
of the underactuated manipulators ten years ago. In the early
years, they controlled the underactuated manipulator with the
aid of brakes equipped in the passive joints [10], and extended
the task to control the system in operational space for following
a path [11]. For the free passive joints without brakes, they also
proposed a time-scaling method [12] for solving the position
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control problem of an underactuated manipulator that has one
passive joint based on the bi-directional motion planning tech-
nique proposed by Nakamura [5]. Almost at the same time, they
also proposed a novel position control method that was com-
posed of simple translation and rotation of the passive link with
considering the motion of the center of percussion of it [13].
Similarly, De Luca and Oriolo [14] selected the center of per-
cussion of the passive last link as the position of linearizing
output, and proposed a fully linearized and input–output decou-
pling control method by means of a nonlinear dynamic feed-
back. Shiroma [15] and Lynch et al. [16] also showed the value
of the center of percussion of the passive link. Based on this
skill, Lynch had given a collision-free path planning method for
a three-DOF manipulator with a passive last joint and realized
on their experimental system. Moreover, Shiroma extended the
underactuated manipulators to coupled planar rigid bodies that
are hinged at the center of percussion of them, and controlled
the serial rigid bodies chain by two translational acceleration
inputs at the first joint. For the manipulators with one passive
joint, Kobayashi and Yoshikawa [17] showed that the system
is completely controllable if the first joint (in the base side) is
actuated.

As a matter of fact, an underactuated manipulator cannot
be restricted to one passive joint with locating at the last.
One cannot expect to design an excellent system with
rigorous limitations such as hinging every link at their center
of percussions. De Luca and Oriolo [14] had pointed out
the relationship between the center of percussion and the
differential flatness. Unfortunately, the differential flatness is
a special property of some underactuated mechanical systems.
Murray [18] had given a catalog of nonholonomic mechanical
systems with differential flatness. It can be shown that the
feasible motion planning and control algorithms proposed for
nonholonomic mechanical systems so far almost depend on the
special properties of the systems. For instance, Xu and Ma [19]
proposed a discontinuous exponentially stabilization control
method for a class of underactuated system with chained
form. Chung [20] and Nakamura [21] designed a chained
form manipulator by spherical gear in transmission based on
the control theory of chained form nonholonomic system.
Scherm [22] proposed a discrete time approach for dynamic
control of underactuated manipulators. This method is feasible
to simple mechanical systems only because that a detailed
motion planning is necessary. Suzuki [23] and Nakamura [24]
suggested the averaging method can be used to construct a
feasible controller for underactuated manipulator based on the
nonlinear dynamics analysis and the Poincaré map. This kind
of control method with periodical inputs or oscillation control
methods shown by Sussmann and Liu [25–28] are elegant on
theory but inconvenient in practice for the complexity of the
dynamic formulations even though a simple 2R manipulator,
and unfortunately, this is an approximate method such that a
robust control technique is necessary.

In this paper, the exponentially stabilizable motion
control method of the nonholonomic mechanical systems is
investigated. We focus on the utilization of the nonholonomic
redundancy of some nonholonomic mechanical systems, of

which the nonholonomic redundancy can be shown by self-
motion demonstrably. Nakamura [29] and his coauthors had
presented that the nonholonomic redundancy is an intrinsic
property of the nonholonomic mechanical system ten years
ago. They simulated the optimal motion with avoiding
joint limits and obstacles on a six-DOF free-floating space
robot system, and exhibited the presence of nonholonomic
redundancy even in the absence of ordinary kinematical
redundancy. It is well known that a full-actuated redundant
manipulator has kinematical redundancy and can be shown by
self-motion definitely [30]. The self-motion can be used to
implement some dexterous tasks such as exampled by [31–
33]. For some nonholonomic redundancy systems, as stated
by Nakamura, the nonholonomic redundancy is different from
the ordinary kinematic redundancy and cannot be exhibited
through self-motion in kinematics level. Colbaugh [34] et al.
also investigated the nonholonomic redundancy of the mobile
manipulator system and shown the value of nonholonomic
redundancy for the motion planning and control of the system.

It is worth saying that the nonholonomic redundancy had
been studied primarily for the first-order nonholonomic system
with driftless. For the second-order nonholonomic mechanical
systems, such as the underactuated manipulators with passive
joints, which tend to be redundant in kinematics shown by many
reports [12–17], but slaved by second-order nonholonomic
constraints with drift term, are uncontrollable in kinematics
level generally. Referring to the recent research reports [12–
17], it can be concluded that the motion planning and control
method of the second-order nonholonomic systems have not
been solved adequately so far, the nonholonomic redundancy of
the second-order nonholonomic mechanical systems has been
studied less frequently.

The rest of the paper is organized as follows. In Section 2,
the demonstrable self-motion of first-order nonholonomic
system are shown. In Section 3, an exponentially stabilizable
control method for a class of underactuated manipulator
is introduced and the self-motion of this kind of second-
order nonholonomic system is also displayed definitely. In
Section 4, the nonholonomic redundancy is used to implement
the accurate path-tracking task of the underactuated redundant
manipulator with elastic active joints. The final section includes
the conclusions.

2. Nonholonomic redundancy of first-order nonholonomic
mechanical system

Nakamura et al. [29] pointed out that the nonholonomic
redundancy could not be exhibited by self-motion as the
ordinary redundancy of a full-actuated system. They conclude
this based on the free-floating space robot system. We can give
a simple example in conflict with this asseveration.

The rolling plate on the plane is a familiar first-order
nonholonomic system, as shown in Fig. 1. Let X =

[
x y θ

]T

denotes the configuration of the plate, with
[
x y

]T being the
location of the plate on the plane, θ is the angle that the plate
makes with a fixed line on the plane. The constraint for the plate



Download English Version:

https://daneshyari.com/en/article/412538

Download Persian Version:

https://daneshyari.com/article/412538

Daneshyari.com

https://daneshyari.com/en/article/412538
https://daneshyari.com/article/412538
https://daneshyari.com

