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a b s t r a c t

The spherical inverted pendulum is a two-input, two-output non-minimum phase nonlinear system.

Recently, the output regulation problem of the spherical inverted pendulum was studied in [21]. It is

known that the solvability of the output regulation problem depends on the solvability of the regulator

equations which are a set of nonlinear partial differential equations. Since the exact solution of the

regulator equations associated with the spherical inverted pendulum is not available due to the

complexity of the equations, the paper [21] tried a polynomial approximation of the solution of the

regulator equations. In this paper, we first show that the solution of the regulator equations associated

with the spherical inverted pendulum exist and then find an approximate solution to the output

regulation problem of the spherical inverted pendulum via a neural network approximation approach.

We also make some comparison between the method in this paper and the method in [21].

Crown Copyright & 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

Shown in Fig. 1 is the spherical inverted pendulum [17,21]
where x,yAR represent the position of the base of the pendulum
in the horizontal plane and X,YAR represent the x and y positions
of the vertical projection of the center of the pendulum onto the
horizontal plane, Fx,FyAR are the control forces being applied to
the cart at the base of the pendulum, m is the mass of the uniform
rod, L is the distance from the base of the pendulum to the center
of mass, and g is the gravitational constant.

The motion equations of the spherical inverted pendulum are
as follows [17,21]:

_x ¼ f ðxÞþgðxÞu

y¼ hðxÞ ð1Þ

where

x1 ¼ x, x2 ¼ _x, x3 ¼ y, x4 ¼ _y, z1 ¼ X, z2 ¼
_X , z3 ¼ Y , z4 ¼

_Y

u1 ¼ Fx, u2 ¼ Fy, u¼ ½u1 u2�
T

x ¼ ½x1 x2 x3 x4 z1 z2 z3 z4�
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The stabilization problem of the spherical inverted pendulum

was considered in several papers [1–3,7,16,18,22,23]. Very
recently, an asymptotic tracking problem of the spherical inverted
pendulum with sinusoidal reference signals was studied in [21].
The problem was formulated as a nonlinear output regulation
problem as studied in, say [4,10,11,13,15,20]. It is known that the
solvability of the output regulation problem depends on the
solvability of the regulator equations which are a set of nonlinear
partial differential equations. Typically, the exact solution of the
regulator equations associated with a nonlinear system is not
available. Therefore, finding various approximate solutions to the
nonlinear output regulation problem has become the more
practical approach. So far, there are mainly two approximate
methods for the nonlinear output regulation problem. The first
one is based on the polynomial approximation of the solution of
the regulator equations [11,12], and the second one is based on
the neural network approximation of the solution of the regulator
equations [6,25]. Both methods have been tested in some single-
input, single output nonlinear systems such as the ball and beam
system [6,12], and the inverted pendulum on a cart system [25],
pendubot system [24], and have shown quite satisfactory results.
Nevertheless, as what is called ‘‘curse of dimensionality’’, the real
challenge to any numerical approximation method is the com-
plexity of the system.

For complex systems, either the numerical instability or the
computational complexity may disqualify a method even though
it may have worked very well for simple systems. From this point
of view, the spherical inverted pendulum system, which has eight
state variables, two inputs and two outputs and is much more
complicated than most benchmark systems such as the ball and
beam system and the inverted pendulum on a cart system, may
serve as an interesting test-bed for the approximate approaches
developed in [11,12,25]. The work in [21] has shown the perfor-
mance of the polynomial approach in some detail. In this paper,
we will further investigate the applicability of the neural network
approach to the approximate output regulation problem of the
spherical inverted pendulum, and make some comparison with
the polynomial approach. Our investigation shows that the neural
network approach not only offers some significant computational
advantage over the polynomial approach, but also results in a
much smaller approximation error for larger exogenous signals.

The rest of the paper is organized as follows. In Section 2 we
summarize the basic theory of the nonlinear output regulation
problem. In Section 3, we first show that the regulator equations
of the system under consideration exists. Then we detail the
neural network approach to obtain the approximate solution of
the regulator equations of the spherical inverted pendulum. In
Section 4, we design a control law that provides an approximate

solution for the output regulation problem of the spherical
inverted pendulum. The performance of our control law is
evaluated through computer simulation and is compared with
that of the control law in [21]. Finally, we close this paper with
some concluding remarks.

2. Preliminaries

In this section, we summarize some results on the nonlinear
output regulation problem based on the treatment in [10,13,25].
Consider a nonlinear plant as follows:

_xðtÞ ¼ f ðxðtÞ,uðtÞ,vðtÞÞ, xð0Þ ¼ x0, tZ0

yðtÞ ¼ hðxðtÞ,uðtÞ,vðtÞÞ, tZ0 ð2Þ

where x(t) is the n-dimensional plant state, u(t) the m-dimen-
sional plant input, y(t) the p-dimensional plant output represent-
ing the tracking error, v(t) the q-dimensional exogenous signal
representing both reference inputs and disturbances. The exo-
genous signal v(t) is generated by a q-dimensional exosystem

_vðtÞ ¼ aðvðtÞÞ, vð0Þ ¼ v0, tZ0 ð3Þ

We assume the functions f, h, and a are sufficiently smooth in a
neighborhood of the origins of the respective Euclidian spaces and
vanish at their origins.

We consider a state feedback control law of the following
form:

u¼cðx,vÞ ð4Þ

where c is also sufficiently smooth in a neighborhood of the
origin vanishing at the origin. The composition of the plant and
the control law will lead to the following closed-loop system:

_xðtÞ ¼ f cðx,vÞ9f ðx,cðx,vÞ,vÞ

yðtÞ ¼ hcðx,vÞ9hðx,cðx,vÞ,vÞ ð5Þ

By state feedback output regulation problem, we mean the
design of a controller of the form (4) such that, for all sufficiently
small x0 and v0, the trajectories of the closed-loop system (5) exist
and are bounded for all tZ0, and is such that limt-1yðtÞ ¼ 0.

Some standard assumptions for ensuring the solvability of the
above problem are listed as follows.

Assumption 2.1. The pair

@f

@x
ð0;0,0Þ,

@f

@u
ð0;0,0Þ

� �

is stabilizable.

Assumption 2.2. The equilibrium of the exosystem (3) at v¼0 is
Lyapunov stable, and all the eigenvalues of ð@a=@vÞð0Þ have zero
real parts.

Assumption 2.3. There exist two sufficiently smooth functions
xðvÞ and uðvÞ defined in a neighborhood V of the origin of Rq such
that xð0Þ ¼ 0,uð0Þ ¼ 0 and for all vAV

@xðvÞ

@v
aðvÞ ¼ f ðxðvÞ,uðvÞ,vÞ

0¼ hðxðvÞ,uðvÞ,vÞ ð6Þ

Remark 2.1. Eq. (6) is known as regulator equations [13].
Assumptions 2.3 is a necessary condition for the solvability of
the nonlinear output regulation problem. Moreover, Assumption
2.3 together with Assumptions 2.1 and 2.2 also leads to a state
feedback control law of the form

cðx,vÞ ¼ uðvÞþKðx�xðvÞÞ ð7Þ

Fig. 1. Spherical inverted pendulum.
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