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h i g h l i g h t s

• We present a system that is able to autonomously build a 3D model of a robot’s hand.
• A hand is located and moved to the centre of the robot’s field of view using exploratory motions.
• The system and the built models are validated by a number of experiments.
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a b s t r a c t

We present a system that is able to autonomously build a 3D model of a robot’s hand, along with a
kinematic model of the robot’s arm, beginning with very little information. The system starts by using
exploratory motions to locate and centre the robot’s hand in the middle of its field of view, and then
progressively builds the 3D and kinematic models. The system is flexible, and easy to integrate with
different robots, because the model building process does not require any fiducial markers to be attached
to the robot’s hand. To validate the models built by the systemwe perform a number of experiments. The
results of the experiments demonstrate that the hand model built by the system can be tracked with a
precision in the order of 1 mm, and that the kinematic model is accurate enough to reliably position the
hand of the robot in camera space.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

When building a robot, or larger robotic system, it is common
for designers to explicitly give the robot all of the models it needs
to control itself (in the form of kinematic and dynamics models)
and all of the models it needs to interact with objects in the
world around it (in the form of 3D CAD models). This is a practical
approach, but it lacks flexibility in cases where properties of the
real world may deviate from the model during the lifetime of the
system. For example, an arm may degrade or be replaced with an
arm of different dimensions, or novel objects may be encountered
by the robot, meaning that existing models may be found wanting.
In these cases the models must be extended or replaced. The task
of taking the measurements for models may also be complicated
by the robot being in hard to reach, or hazardous locations.

Our work focuses on building robots and robotic systems
which can autonomously construct models of themselves and the

∗ Corresponding author. Tel.: +44 7815773017.
E-mail addresses: abroun@alanbroun.net, alan.broun@brl.ac.uk (A. Broun),

csxcb@compsci.bristol.ac.uk (C. Beck), tony.pipe@brl.ac.uk (T. Pipe),
majid@compsci.bristol.ac.uk (M. Mirmehdi), chris.melhuish@brl.ac.uk
(C. Melhuish).

external objects withwhich they interact. In particular, we explore
the use of active 3D vision as a tool that a robot can use to explore
itself, and its surroundings, in order to autonomously construct
models.

The increasing availability of reasonably priced depth cameras
such as the Mesa Imaging SwissRanger or the Microsoft Kinect has
made it easier for robotic systems to perceive the world in 3D.
These cameras provide depth values for pixels in the image, and so
produce a 3D point cloud in camera space. The quality of the point
clouds produced by these cameras reduces the need for researchers
to set up technically challenging stereo camera systems, which
often rely on the presence of highly textured areas in order to
achieve reasonably similar results.

A practical problem for a robot with 3D vision is the task of re-
lating themovement of its body to the Cartesian space of its camera
system, so that it can interact with objects it sees. More fundamen-
tal than that, it may also be a problem for the robot to work out
which parts of a 3D image belong to its body and to its hand.

We present a solution to both of these problems in the form
of an extended version of the system we presented in [1]. The
system allows a robot to reliably identify its hand in its field of
view, and then to build a kinematic model of its arm in camera
space. Building the kinematic model in camera space implicitly
determines the transformation between camera space and the
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model. Once the kinematic model is built, inverse kinematics can
be used to accurately move themanipulator of the robot in camera
space. In effect, the robot is therefore able to ‘bootstrap’ itself, from
a state of fairly limited knowledge, to having a kinematic model
of its arm, which it can then use to further interact with, and to
explore, the world.

The systemworks by first using a series of exploratory motions
to roughly identify the location, and extents of the robot’s hand
in its field of view. It then uses a simple form of visual servoing
to move the hand to the centre of the field of view, in order to
maximise the quality of the subsequent processes. Once centred,
the system builds a model of the robot’s hand by turning the hand
in front of a Kinect depth camera, whilst aligning and merging the
point clouds obtained from the Kinect into a common reference
frame. The model is then used to track future movements of the
hand, by aligning the model against incoming point clouds. This
systemhas the useful property of not just providing an estimate for
the transformation of the hand in camera space, but also providing
a 3Dmodel of the hand which can be useful for other tasks such as
planning grasps, or checking for collisions between the robot and
the environment.

Once a model of the robot’s hand has been built and is being
tracked, we then use it to automatically build a kinematic model of
the robot’s armby tracking themovement of the hand as each revo-
lute joint in the arm is rotated in turn. This allows us to build an ac-
curate model of the arm, starting with very little information. This
is an advantage, as a robot that can deduce information for itself, is
potentially more robust, and requires less work to commission.

The rest of the paper proceeds as follows. Section 2 describes
related work and reviews the techniques which we use to build
our system. Section 3 describes the robotic platformwe use for our
experiments. Section 4 provides a description of how the robotic
hand is modelled and tracked along with details of automatically
building a kinematic skeleton for the robotic system. Section 5
evaluates the accuracy of the system, and Section 6 presents
conclusions along with ideas for future work.

2. Background and related work

2.1. Exploratory motion and active vision

Thework of Ballard [2] was amongst the first to look in depth at
camera systems which were not simply passive. Ballard observed
that more information may be obtained from a visual scene, or
obtained at a lower computational cost, through the process of
moving the camera system and observing the scene from a number
of different viewpoints. Such systems are often termed active vision
systems to distinguish them from passive vision systems.

An alternative to moving the camera in a system is to move the
object or scene being observed. The idea of using exploratory mo-
tions to both identify a robot’s end effector, and also to segment
objects of interest from the background was explored in work by
Marjanovic et al. [3] and later Fitzpatrick and Metta [4] at MIT as
part of the work on the Cog robot. The technique was explored in
detail by Broun and Studley [5], who showed that a waving ex-
ploratorymotion could be reliably detected, even in thepresence of
a large amount of distracting motion. Work has also been done by
Katz and Brock [6] on using exploratory motions to autonomously
identify the structure of articulated objects.

2.2. Object modelling and tracking

When building models from range data, such as that obtained
from a laser scanner or depth camera, the Iterative Closest Point
(ICP) algorithm presented by Chen and Medioni [7] and Besl and

McKay [8] is awidely used algorithm for aligning one depth camera
frame with either another frame, or with a reference model.

The ICP algorithm has been the subject of much research since
its initial presentation. Rusinkiewicz and Levoy [9] identified the
key stages that make up the ICP algorithm, outlining a number of
techniques for making the algorithm more efficient and speeding
up convergence. The ICP algorithm was used as a key part of an
object modelling and tracking system built by Weise et al. [10],
and a very similar system was used to build models of objects
held in a robot’s hand by Krainin et al. [11]. In both of these
systems, models were constructed by first aligning point clouds
from a depth camera into a common coordinate frame, using the
ICP algorithm. Subsequently, corresponding points from the point
clouds were averaged together to form surfel (surface element)
models. Surfels as described in [12] are orientated 3Dpoints, which
can be used to describe complex geometric objectswithout explicit
connectivity information. The advantage of averaging point clouds
together to form a surfel model is that it smooths out a lot of noise
that would otherwise accumulate as a result of estimating lots of
small transformations [13].

Tracking a robot’s hand in camera space is a special case of
tracking an arbitrary 3Dobject in camera space, and this is an active
area of research, with Lepetit and Fua [14] providing a comprehen-
sive survey of the main techniques. Fiducial tracking [15] involves
tracking markers attached to the object of interest. Model-based
tracking involves posing a 3Dmodel of the object of interest to best
match the information coming from the camera. This method has
been used extensively in human hand tracking applications, such
as [16].

2.3. Kinematic identification

There are a number of methods available for identifying a
robot’s kinematic model. Early work from the 1980s includes Cir-
cle Point Analysis (CPA) used by Stone et al. [17], and described
in detail by Mooring et al. [18]. CPA involves fitting circles to ob-
served endpoint locations in order to identify the axis of revolution
for a revolute joint. Another method for identifying the joint axes
of a robot is the Jacobian Matrix Method of Bennett and Holler-
bach [19]. This method requires either joint torque sensors or a
method of estimating the linear and angular velocity of the robot’s
end link [19].

More recently, the field of developmental robotics has taken
an interest in kinematic identification. Here, it has been explored
as part of more general efforts to enable robots to build and
maintain a body schema for themselves. In the context of robotics,
Hoffmann et al. [20] describe a body schema as a group of body
representations, which allow an embodied agent to control its
actions, and to integrate sensory information such as vision or
touch into common frames of reference. These representations
may include kinematic and dynamic models, and the emphasis is
on building the models autonomously. The aim is to give a robot
the ability to adapt to changes in its body due to damage, or to
dynamically extend its body schema to allow the use of tools.
Hersch et al. [21] built a kinematic model of a robot by observing
end effectors using an iterative gradient descent approach. Sturm
et al. [15] presented a system that uses a Bayesian network to learn
arbitrary kinematic chains, which can also cope with changes in
the kinematic chains as the system runs. This system however,
requires observations of all joint positions to build the kinematic
chain, whereas our system only needs to observe themovement of
the end of the chain.

Finally, recent work by Hart and Scassellati [22] takes a similar
approach to the one presented here. The difference lies in the fact
that the method of Hart and Scassellati requires an Augmented
Reality (AR) marker to track the hand, whereas our method builds
and tracks a completemodel of the robot’s hand, and so can operate
without AR markers.
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