Robotics and Autonomous Systems 62 (2014) 355-365

Contents lists available at ScienceDirect D homous 5
=

Robotics and Autonomous Systems

14

journal homepage: www.elsevier.com/locate/robot

Manipulation planning using learned symbolic state abstractions

—
@ CrossMark

Richard Dearden *, Chris Burbridge

School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

HIGHLIGHTS

Robotic manipulation planning system.

Goals specified symbolically so different geometric solutions can be found.
Learned two-way mapping between symbolic and geometric states.
Mapping allows a symbolic state to be extracted from a scene.

Allows a plan to be translated into a sequence of geometric configurations.

ARTICLE INFO ABSTRACT

Article history:
Available online 11 October 2013

We present an approach for planning robotic manipulation tasks that uses a learned mapping between
geometric states and logical predicates. Manipulation planning, because it requires task-level and
geometric reasoning, requires such a mapping to convert between the two. Consider a robot tasked with
putting several cups on a tray. The robot needs to find positions for all the objects, and may need to
nest one cup inside another to get them all on the tray. This requires translating back and forth between
symbolic states that the planner uses, such as stacked (cup1, cup2), and geometric states representing
the positions and poses of the objects. We learn the mapping from labelled examples, and importantly
learn a representation that can be used in both the forward (from geometric to symbolic) and reverse
directions. This enables us to build symbolic representations of scenes the robot observes, but also to
translate a desired symbolic state from a plan into a geometric state that the robot can achieve through
manipulation. We also show how such a mapping can be used for efficient manipulation planning: the
planner first plans symbolically, then applies the mapping to generate geometric positions that are then
sent to a path planner.

Keywords:
Intelligent robots
Supervised learning
Automatic planning
Symbolic reasoning

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The vast majority of robots are currently controlled using
hand-written programs. These programs are typically highly
specialised to a single task, and include human-specified geometric
information about the objects and behaviours being performed.
This greatly limits the opportunities for reuse of the programs,
and also makes creating new ones time consuming as it involves
a mixture of writing code and recording geometric states of the
robot and the objects the robot is interacting with. In this paper,
we investigate how we can use parts of existing hand-written
programs as atomic actions to produce a higher-level interface
to the robot—one where a user specifies desired goals and the
robot reassembles the parts of existing programs to generate a
new program to achieve the goal. In particular, we are interested

* Corresponding author. Tel.: +44 121 414 6687.
E-mail addresses: richard.dearden@gmail.com, RDearden@slb.com
(R. Dearden), c.j.c.burbridge@cs.bham.ac.uk (C. Burbridge).

0921-8890/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.robot.2013.09.015

in robot manipulation tasks; we will use tidying a house as a
motivating example throughout the paper.

To allow the user to create new robot behaviours by specifying
goals, we use an automatic planning approach. We represent the
purpose of a fragment of one of the hand-built programs in terms
of the preconditions that must be true to execute the code fragment
and the effects it has on the state of the world. We refer to this
representation as a planning action. The planner then searches for a
sequence of these actions that will achieve the user-specified goal.

Planning is challenging for robotic manipulation tasks because
they contain a mixture of symbolic and geometric constraints. For
example, we can plan to tidy a table by placing cups and plates
on a tray and then moving them to the kitchen to be cleaned,
but to accomplish the task we need to reason symbolically—how
to achieve that no objects are on the table—and geometrically—
where should I put each object, and how should I move the robot
arm to achieve that. Many manipulation planning approaches (see
Chapter 7 of [1] for an overview) assume that the task can be
treated entirely as a geometric problem, with the challenge being
to place all the objects in their desired positions. However, this


http://dx.doi.org/10.1016/j.robot.2013.09.015
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2013.09.015&domain=pdf
mailto:richard.dearden@gmail.com
mailto:RDearden@slb.com
mailto:c.j.c.burbridge@cs.bham.ac.uk
http://dx.doi.org/10.1016/j.robot.2013.09.015

356 R. Dearden, C. Burbridge / Robotics and Autonomous Systems 62 (2014) 355-365

approach means that we are essentially providing part of the plan
in advance. In our example, if one cup must be nested in another
to get them all on the tray, this must be specified in the goal. By
planning symbolically as well as geometrically, we make fewer
assumptions about the domain information available to us, and can
find a much richer set of plans for a task.

Planning with a mixture of symbolic and geometric states
requires a set of symbolic predicates that correspond to geometric
relationships. For example, we need to be able to express that
a cup is touching the tray, which we write symbolically as
touching(cup,tray), but this predicate corresponds to a set
of geometric configurations of the two objects, and some way
must be found to represent this if we are to generate geometries
for which the predicate is true. Previous approaches (see, for
example, [2]) have manually built functions to do this. However,
since we have the example programs available to us, we take the
approach of learning the mapping between symbolic predicates
and geometric states. By simulating the example programs we can
generate a number of geometric states, and through a combination
of comments in the code and knowledge of the program semantics
we can label them with the predicates that hold in each one. This
removes the burden on users to create the mapping themselves.
By selecting the right representation, we can also use it both to
translate from geometric to symbolic states (so as to determine
what the symbolic representation of the current state is) and
vice versa (to generate a geometric state corresponding to some
symbolic predicate in a plan). Because the training data come
from the existing robot programs, the learned mapping will also
naturally reflect any implicit constraints in the programs, for
example ensuring that no objects are placed too close to the edge
of a table.

We learn a kernel density estimate [3,4] from the training
data for each predicate. This allows us not only to label unseen
geometric states (the forward direction for the mapping), but
also, via a hill-climbing search in the probability density function,
to find geometric states that make predicates true with high
probability (the backwards direction). We extend this to find
geometric states for conjunctions of symbolic predicates and
also - for backtracking - to find multiple, significantly different,
geometric states corresponding to a symbolic state (this work was
first published in [5]).

Because of the interactions between the symbolic and geomet-
ric parts of the planning problem, the ideal planning approach
would be to interleave the two, with geometric planning poten-
tially causing symbolic backtracking when it fails, and vice versa.
Unfortunately, generating paths and geometric states is very time
consuming [6], so this hybrid planning approach is often unaccept-
ably slow due to the many geometric states and robot path plans
generated during the search for a plan. To overcome this, we take
a different approach, preferring to generate a complete plan at a
purely symbolic level, and then we translate that plan into a geo-
metric one and generate paths to achieve the geometric configura-
tions. If this process fails, we allow the system a limited amount of
purely geometric backtracking - proposing new positions for the
objects moved by the robot - before giving up and backtracking at
the symbolic level to generate a different plan.

The structure of this paper is as follows. In the next section,
we discuss related work on both mapping between symbolic
and geometric representations and on planning for robotic
manipulation tasks. In Section 3, we describe the symbolic to
geometric mapping in detail, and in Section 4 we present the
planning algorithm that uses it. We present experiments to
demonstrate the effectiveness of the approach in Section 5, and
present our conclusions and future work in Section 6.

2. Related work

A number of planning systems have been developed that
operate in a mixture of geometric and symbolic states and
therefore need to map between them. Probably the best known
is aSyMov [7], which solves tasks very similar to ours using a
planner that combines a symbolic planner with a probabilistic
roadmap [8] for geometric planning. In common with most of these
approaches, the authors assume that they are given a mapping
from geometric to symbolic states. In addition, they restrict the
objects to certain fixed world positions and only consider a
single symbolic-geometric predicate “on”, so the translation from
symbolic to geometric states is trivial.

Kaelbling et al. [2] have proposed an alternative approach
to manipulation planning which does full hybrid planning, but,
to reduce the complexity of the problem, uses a hierarchical
planner and interleaves planning with execution. As with the
above approach, it again only seems to use a single symbolic
predicate for a geometric concept. Their mapping from symbolic
to geometric states is handled by geometric suggesters which
are hand-built functions for generating geometric states. Similar
approaches have been proposed by Wolfe et al. [9] and Karlsson
et al. [10], which both use a hierarchical task network planner
to constrain the search space to make full hybrid planning more
tractable. In [10], the authors use a uniform sampling approach
to generate geometric states when backtracking, and in [6] the
same authors extend this by using constraints to further reduce
the amount of backtracking needed to find plans.

Other recent “fully hybrid” approaches include work on
semantic attachment by Dornhege et al. [11,12], and on planning
modulo theories by Gregory et al. [13]. In the semantic attachment
approach, the symbolic planning language includes calls to
external functions that check preconditions of actions or calculate
their effects and may update a number of state variables. For a
manipulation domain, as described in [12], the RRT planner used
to compute arm motions, and the geometric grasp planner used
to check if an object can be grasped, would be linked to the
symbolic planner through semantic attachments. Similarly, the
planning modulo theories approach uses specialised solvers for
specific theories - path planning might again be an example - to
assist the symbolic planner. In both cases, it is unclear if it would be
possible in a general way to use the specialised solvers to update
our learned geometric predicates.

The more traditional approach to manipulation planning is
surveyed in Chapter 7 of [1]. These approaches treat planning as a
completely geometric problem of searching in the set of reachable
geometric configurations to reach a goal. However, this requires
a geometric goal to be specified, which means that alternative
geometric solutions that would solve the same symbolic goal
cannot be generated—for example placing two cups on a tray or
nesting the two cups on the tray.

A recent alternative proposed by Mdésenlechner and Beetz [14]
is to specify goals symbolically but evaluate the plan geometrically.
The idea is to use a high-fidelity physics simulation to predict
the effects of actions and a hand-built mapping from geometric
to symbolic states. Planning is conducted by a forward search,
and the effects of actions determined by simulating them, and
then using the mapping to update the symbolic state. This has
advantages in terms of robustness, since multiple simulator runs
can be performed, but is potentially very expensive for complex
plans.

The idea of learning a mapping from geometric to symbolic
states has been considered before in the literature. However, what
sets our approach apart from others is the idea of using the
learned mapping in reverse, generating geometry from a symbolic
description to enable symbolic planning operators to be utilised to
produce geometric effects.



Download English Version:

https://daneshyari.com/en/article/412562

Download Persian Version:

https://daneshyari.com/article/412562

Daneshyari.com


https://daneshyari.com/en/article/412562
https://daneshyari.com/article/412562
https://daneshyari.com

