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Distributed coordination architecture for multi-robot formation control
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Abstract

In the exploration and implementation of formation control strategies, communication range and bandwidth limitations form a barrier to
large scale formation control applications. The limitations of current formation control strategies involving a leader–follower approach and a
consensus-based approach with fully available group trajectory information are explored. A unified, distributed formation control architecture
that accommodates an arbitrary number of group leaders and arbitrary information flow among vehicles is proposed. The architecture requires
only local neighbor-to-neighbor information exchange. In particular, an extended consensus algorithm is applied on the group level to estimate
the time-varying group trajectory information in a distributed manner. Based on the estimated group trajectory information, a consensus-based
distributed formation control strategy is then applied for vehicle level control. The proposed architecture is experimentally implemented and
validated on a multi-robot platform under local neighbor-to-neighbor information exchange with a single or multiple leaders involved.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the field of cooperative control, approaches for
achieving of formation maintenance among multiple vehicles
have received significant attention. Given the limitations
of communication bandwidth and communication range in
many applications, the need for distributed algorithms that
require only local neighbor-to-neighbor information exchange
is apparent.

A typical leader–follower formation control approach
(e.g., [1]) assumes only one group leader within the team.
In this case, only the group leader has the knowledge of
group trajectory information, which is either preprogrammed
in the group leader or provided to the group leader by an
external source. The formation is then built on the reaction
of the other group members to the motion of the group
leader. The fact that only a single group leader is involved
in the team implies that the leader–follower approach is
simple to implement and understand, and the requirement
on communication bandwidth is reduced. This is, however, a
single point of massive failure type system because the loss
of the group leader causes the entire group to fail. Another
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issue with the typical leader–follower approach is the lack of
inter-vehicle information feedback throughout the group. For
example, feedback from the followers is not used by the leader
so the formation can become disjoint and followers can be left
behind if they are not able to track the motion of the leader
accurately.

In order to overcome this type of single point of failure
tendency, much research has been focusing on decentralized or
distributed cooperative control strategies where vehicle control
laws are coupled and each vehicle makes its own decision
according to the states of its neighbors (e.g., [2–17]). This
allows the group to continue on to achieve an objective even
in the presence of failure of any group member.

Among the decentralized or distributed cooperative control
strategies, consensus algorithms (e.g., [6–12,15]) focus on
driving the information states of all vehicles to a common value.
For formation stabilization with a static formation centroid,
if each vehicle in a group can reach consensus on the center
point of the desired formation and specify a corresponding
desired deviation from the center point, then vehicle formations
can be achieved. To apply consensus algorithms to achieve
formation maneuvering with a time-varying formation centroid
trajectory, either the common formation velocity for the group
or the desired group trajectory is assumed to be known by
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each vehicle in the group as in [3,5,17,18]. In particular, [5]
assumes that a sequence of constant, desired formation centroid
states are preprogrammed on each vehicle. However, this
approach cannot account for dynamically changing formation
centroid states in response to dynamically changing situational
awareness. While a flocking behavior is achieved in [4,19]
when no vehicle has the knowledge of group formation
velocity, an accurate formation geometry is not specified. In
this paper, we focus on applications that require accurate
formation geometry maintenance with desired group trajectory
information involved.

The requirement that each vehicle have the knowledge of
the desired group trajectory may not be realistic for many
applications. For example, communication bandwidth and
range limitations may prevent each vehicle in the group having
access to the group trajectory information. Also, to increase
stealth and flexibility, only a portion of the vehicles in the team
may be provided with the desired group trajectory information.
In addition, it is also possible that only a portion of the vehicles
are able to detect a target or dangerous source at a certain time
instant, and those vehicles in turn serve as the group leaders to
guide the behaviors of the other group members.

Given the strength of the consensus algorithms for formation
control with coupling involved between neighboring vehicles
and the effectiveness of a traditional leader–follower approach
when group trajectory information is limited in the formation,
integrating the two approaches yields the strength of both
strategies. Bandwidth limitations for the group can be handled
in limiting the amount of group trajectory information
availability within the group, while robustness is achieved with
distributed nature of the consensus algorithms.

The main contributions of the current paper are twofold.
First, we propose a unified, distributed formation control
architecture that accommodates an arbitrary number of group
leaders and allows for arbitrary information flow among
vehicles without adding complexity to the control law design
and analysis. In particular, an extended consensus algorithm
is applied on the group level to estimate the time-varying
group trajectory information in a distributed manner. Based
on the estimated group trajectory information, a consensus-
based distributed formation control strategy is then applied for
vehicle level control. Second, the proposed formation control
architecture is experimentally implemented and validated on
a multi-robot platform and the results are discussed. It is
worthwhile to mention that although various strategies for
decentralized or distributed formation control have been studied
in the literature, few have been systematically verified on
experimental platforms. A preliminary version of the work has
been presented at the 2007 American Control Conference [20].

2. Background and preliminaries

2.1. Graph theory notations

It is natural to model information exchange among vehicles
by directed or undirected graphs. A digraph (directed graph)
consists of a pair (N , E), where N is a finite nonempty set of
nodes, and E ∈ N × N is a set of ordered pairs of nodes,

called edges. An edge (i, j) in a digraph denotes that vehicle j
can obtain information from vehicle i , but not necessarily vice
versa. In contrast, the pairs of nodes in an undirected graph
are unordered, where an edge (i, j) denotes that vehicles i
and j can obtain information from one another. Note that an
undirected graph can be considered a special case of a digraph,
where an edge (i, j) in the undirected graph corresponds to
edges (i, j) and ( j, i) in the digraph. If there is an edge from
node i to node j in a digraph, then i is the parent node, and j
is the child node. A directed path is a sequence of edges of the
form (vi1 , vi2), (vi2 , vi3), . . . , where vi j ∈ N , in a digraph. An
undirected path in an undirected graph is defined analogously.
In a digraph, a cycle is a directed path that starts and ends at the
same node. A digraph is strongly connected if there is a directed
path from every node to every other node. An undirected graph
is connected if there is a path between any distinct pair of nodes.
A directed tree is a digraph, where every node has exactly one
parent except for one node, called the root, which has no parent,
and the root has a directed path to every other node. Note that
in a directed tree, each edge has a natural orientation away from
the root, and no cycle exists. In the case of undirected graphs,
a tree is a graph in which every pair of nodes is connected
by exactly one path. A directed spanning tree of a digraph is
a directed tree formed by graph edges that connect all of the
nodes of the graph. A graph has or contains a directed spanning
tree if there exists a directed spanning tree being a subset of
the graph. Note that the condition that a digraph has a directed
spanning tree is equivalent to the case that there exists at least
one node having a directed path to all of the other nodes. In the
case of undirected graphs, having an undirected spanning tree is
equivalent to being connected. However, in the case of directed
graphs, having a directed spanning tree is a weaker condition
than being strongly connected.

The adjacency matrix A = [ai j ] ∈ Rn×n of a digraph is
defined as ai i = 0 and ai j > 0 if ( j, i) ∈ E where i 6= j . The
adjacency matrix of an undirected graph is defined analogously
except that ai j = a j i , ∀i 6= j , since ( j, i) ∈ E implies
(i, j) ∈ E . Let matrix L = [`i j ] ∈ Rn×n be defined as
`i i =

∑
j 6=i ai j and `i j = −ai j , where i 6= j . The matrix L

satisfies the following conditions:

`i j ≤ 0, i 6= j,
n∑

j=1

`i j = 0, i = 1, . . . , n. (1)

For an undirected graph, L is called the Laplacian matrix [21],
which is symmetric positive semi-definite. However, L for a
digraph does not have this property.

Let 1 and 0 denote the n × 1 column vector of all ones and
all zeros respectively. Let In denote the n × n identity matrix.
Let Mn(R) represent the set of all n × n real matrices. Given a
matrix S = [si j ] ∈ Mn(R), the digraph of S, denoted by Γ (S),
is the digraph on n nodes vi , i ∈ {1, 2, · · · , n}, such that there
is an edge in Γ (S) from v j to vi if and only if si j 6= 0 (cf. [22]).

2.2. Consensus algorithms

Consider vehicles with single-integrator dynamics given by

ṙi = ui , i = 1, . . . , n, (2)
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