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a b s t r a c t

An ensemble kernel classifier is proposed in this paper by integrating a kernel principal component

analysis (KPCA) with a support vector machine (SVM) as well as an immune clonal selection algorithm

(ICSA). The KPCA approach is used to extract features, whereas the SVM technique is employed to deal

with classification, and the ICSA is applied to optimize the parameters of the proposed scheme. The

proposed ensemble classifier can automatically select the kernel type and optimize its parameter sets,

in order to produce various SVM classifiers with different kernels. Regardless of whether the data is

linear or nonlinear, an optimum classification result can be obtained. In order to demonstrate the

effectiveness of the classifier, it is applied to discriminate the primary open-angle glaucoma (POAG)

using a standard classification dataset. Experimental results reveal that the proposed ensemble

classifier is accurate and more effective when compared to other approaches in the literature. It is

envisaged that ensemble kernel classifier could hold a high potential in classification of pattern

recognition problems.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Automatic classification is an important field in pattern recog-
nition. Many classification methods have been proposed in the
literature, such as neural networks [1], nearest neighbors [2],
decision trees [3], and kernel-based methods (support vector
machines) [4–6]. Among these methods, kernel-based methods,
although still in its infancy, have attracted greater research
interest and have successfully been applied to many areas [7,8].
Many linear learning algorithms have been kernelized success-
fully by making use of the kernel framework. The inner product is
replaced with an appropriate positive definite function (kernel
function) so that the resulting nonlinear map can be implicitly
implemented by the kernel function from the original data space
X to the high-dimensional feature space F [6]. The attractiveness
of such algorithms stems from their elegant treatment of non-
linear problems and their efficiency in solving high-dimensional
problems.

Support vector machines (SVMs) are kernel classification
technique that is established on the unique theory of structural
risk minimization principle. SVMs can be robust to over-fitting

problem and have been more widely employed in diverse areas
ranging from pattern recognition [7–9] to modeling of nonlinear
dynamic systems [10].

In a SVM classifier, the first important step is feature selection
and extraction. Most data sets contain a certain amount of
redundancy or irrelevant features that will not aid the knowledge
discovery. In fact, these redundant features will mislead the data
analyses, and hinder other relevant features that are present in
the data. Consequently, one often tries to reduce the number of
features by applying feature selection schemes [9,11,12]. Kernel
principal component analysis (KPCA), as a typical feature extrac-
tion method, is a nonlinear principal component analysis (PCA)
technique that is developed using the kernel method [11], which
is closely related to the SVM [6].

To speed up the convergence of SVM and achieve high
recognition accuracy, a general kernelization framework used in
KPCA is applied to SVM in this paper. KPCA is viewed as a data
mapping or transformation to SVM, so that new features are used
as inputs to SVM to solve the classification problem. The frame-
work is controlled by two kernel types in the KPCA and SVM.
Different kernels in the KPCA and SVM will result in different
structures for the classifier. It should be pointed out that the
nature of the input data types whether they are linear or non-
linear does not play an important role. The optimal model can
then be chosen by the system to fit the data automatically. Once
the nonlinear kernel in the KPCA procedure is performed, the
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system can directly perform linear learning algorithm using the
SVM subsequently [12,13].

A highly effective model can only be built after its parameters
are carefully determined. The researchers in [14–16] have pointed
out that the search for optimal parameters of the SVM plays a
crucial role in building a prediction model with a high prediction
accuracy and stability. However, few studies have been devoted
to optimizing the overall dynamic parameters of the KPCA and
SVM integrated framework. The overall performance of the
integrated KPCA and SVM scheme depends on not only kernel
parameters in the SVM, but also on different kernels and identi-
fied number of the principal components in the KPCA, as well as
on the penalty parameter C in the SVM algorithm. These para-
meters can control both the model complexity as well as the
training error.

In this paper, in order to automatically optimize the integrated
KPCA and SVM parameters, an adaptive artificial immune algo-
rithm, designated as immune clonal selection algorithm (ICSA) is
proposed. Artificial immune algorithm is an effective method in
solving a wide range of optimization problems [17,18] and has
been widely and successfully applied to complicated real-world
problems in science and engineering, such as multivariable
function optimization [26], and designing stack filters [27].
Compared with the commonly used standard genetic algorithm
(GA), ICSA’s antibody fitness calculation maintains a good diver-
sity of the population. It overcomes the premature convergence of
GA and limits its random roaming. In order to demonstrate the
effectiveness of the proposed ensemble kernel model, we use it to
identify primary open-angle glaucoma (POAG) disease as an
auxiliary diagnosis tool, and compare it with the SVM machine
learning model. Furthermore, other linear and nonlinear experi-
ments in certain general data sets have also been conducted to
test the performance of as proposed method.

The main contribution of this work is on developing a hybrid
KPCAþSVMþ ICSA framework, which can classify the data auto-
matically. The model is then used for the first time to identify the
POAG as an auxiliary diagnosis tool. The proposed ensemble
kernel model is shown to be effective by conducting a number
of experiments and is shown to possess a high potential as a
useful tool in classification of pattern recognition problems.

The remainder of the paper is organized as follows: in Section 2,
the SVM classification and the KPCA dimension reduction meth-
ods are reviewed and the basic structure of the kernel optimiza-
tion classifier is presented. In Section 3, we provide the details on
the parameter optimization using the ICSA. In Section 4, the
proposed optimization classifier is applied to the POAG discrimi-
nant and is tested using various data sets. Finally, conclusions are
stated in Section 5.

2. Basic methods

2.1. Kernel principal component analysis

The kernel principal component analysis (KPCA) [9,11] aims to
map the given data points x¼{x1,x2,y,xn}, xiARn, i¼ 1,2,. . .,n,
from the input space Rn to a high dimensional (possibly infinite-
dimensional) feature space F by a nonlinear function j:Rn-F. The
training data matrix is denoted by j(x)¼{j(x1),j(x2),y,j(xn)}.

In fact, one can avoid performing the nonlinear mapping and
only compute the dot products j(x)T

Uj(y) in the feature space F

by introducing a kernel function k(x,y) [11]. Some of the most
widely used kernel functions are shown in Table 1.

In Table 1, d and d denote the parameters that affect the
performance of the KPCA. The polynomial kernel and the radial
basis function (RBF) kernel always satisfy Mercer’s theorem. The

polynomial kernel can be simplified as a linear kernel when the
parameter d¼1. In practice, the radial basis kernel function is most
commonly used [4]. Different kernel functions implicitly define the
form of the mapping and the feature space, thus actually determine
how well the nonlinearity of a system can be captured.

Given the mapping data set j(x), which has been centralizedPn
k ¼ 1 jðxkÞ ¼ 0 in the feature space F and the covariance matrix

CF
¼

1

n

Xn

i ¼ 1

jðxiÞUjðxiÞ
T

ð1Þ

one has to solve the following eigenvalue problem in the feature
space to diagonalize the covariance matrix, namely

lv¼ CFv ð2Þ

where the eigenvalue lZ0 and the principal component vAF\{0}.
According to the reproducing kernel theory, there exists a set of
coefficients ai in F such that

v¼
Xn

i ¼ 1

aijðxiÞ ð3Þ

The problem is then reduced to obtaining the coefficients ai.
This can be formulated according to the following eigenvalue
problem when Eq. (3) is substituted into Eq. (2)

~Ka¼ nla ð4Þ

where ~K is a standardized K matrix, and a is the corresponding
eigenvector, the matrix K is an n�n kernel matrix of the training
samples, in which kij¼k(xi,xj)¼/j(xi),j(xj)S. The relationship
between ~K and K is governed by

~K ¼ K�LK�KLþLKL ð5Þ

where L is an n�n matrix in which all the elements are equal to
1/n and n is the sample number. Therefore, the eigenvalues are
ordered as l1Zl2Z � � �Zln, and the corresponding eigenvectors
set is given by a1,a2,. . .,an. In fact, the dimensionality of the data
can be reduced by retaining only the first m eigenvectors in the
feature space, typically m5n.

The samples are extracted through projecting onto the m

eigenvectors. An input sample x is projected onto the kth principal
component v in the feature space j(x) according to

bk ¼/nk,jðxÞS¼
Xm

i ¼ 1

aðkÞi Kðxi,xÞ ð6Þ

Therefore, x is expressed as a vector in F after j(x) is normal-
ized, that is

ðb1,b2,. . .,bmÞ
T
¼

Pn
i ¼ 1 a

ð1Þ
i ½Kðxi,xÞ�

Pn
i ¼ 1 Kðxi,xÞ=n�ffiffiffiffiffiffiffiffi

nla1
q ,. . .,

2
64

�

Pn
i ¼ 1 a

ðmÞ
i ½Kðxi,xÞ�

Pn
i ¼ 1 Kðxi,xÞ=n�ffiffiffiffiffiffiffiffiffi

nlam
q

3
75

T

ð7Þ

where a(1), a(2), y ,a(m) are the m eigenvectors associated with the
first m largest eigenvalues la1,la2,. . .,lam, respectively, aðiÞj denotes the
jth component of the vector a(i), and n is the number of samples.

Table 1
Some of the most widely used kernel functions.

Type of classifier Kernel function

Linear kernel k(x,y)¼(xUy)

Polynomial kernel k(x,y)¼(xUyþ1)d

Radial basis kernel kðx,yÞ ¼ expð�9x�y92
=dÞ
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