
Robotics and Autonomous Systems 59 (2011) 22–33

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Self-learning fuzzy logic controllers for pursuit–evasion differential games
Sameh F. Desouky ∗, Howard M. Schwartz
Department of Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada

a r t i c l e i n f o

Article history:
Received 17 February 2010
Accepted 13 September 2010
Available online 1 October 2010

Keywords:
Differential game
Function approximation
Fuzzy control
Genetic algorithms
Q(λ)-learning
Reinforcement learning

a b s t r a c t

This paper addresses the problemof tuning the input and the output parameters of a fuzzy logic controller.
The system learns autonomously without supervision or a priori training data. Two novel techniques
are proposed. The first technique combines Q(λ)-learning with function approximation (fuzzy inference
system) to tune the parameters of a fuzzy logic controller operating in continuous state and action spaces.
The second technique combines Q(λ)-learning with genetic algorithms to tune the parameters of a fuzzy
logic controller in the discrete state and action spaces. The proposed techniques are applied to different
pursuit–evasion differential games. The proposed techniques are compared with the classical control
strategy, Q(λ)-learning only, reward-based genetic algorithms learning, andwith the technique proposed
by Dai et al. (2005) [19] in which a neural network is used as a function approximation for Q-learning.
Computer simulations show the usefulness of the proposed techniques.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Fuzzy logic controllers (FLCs) are currently being used in en-
gineering applications [1,2] especially for plants that are complex
and ill-defined [3,4] and plantswith high uncertainty in the knowl-
edge about its environment such as autonomous mobile robotic
systems [5,6]. However, FLC has a drawback of finding its knowl-
edge base which is based on a tedious and unreliable trial and er-
ror process. To overcome this drawback one can use supervised
learning [7–11] that needs a teacher or input/output training data.
However, in many practical cases the model is totally or partially
unknown and it is difficult or expensive and in some cases impos-
sible to get training data. In such cases it is preferable to use rein-
forcement learning (RL).

RL is a computational approach to learning through interaction
with the environment [12,13]. The main advantage of RL is that it
does not need either a teacher or a known model. RL is suitable
for intelligent robot control especially in the field of autonomous
mobile robots [14–18].

1.1. Related work

Limited studies have applied RL alone to solve environmental
problems but its use with other learning algorithms has increased.
In [19], a RL approach is used to tune the parameters of a FLC.
This approach is applied to a single case of one robot following
another along a straight line. In [15,20], the authors proposed

∗ Corresponding author. Tel.: +1 613 520 2600x5725.
E-mail addresses: sameh@sce.carleton.ca, samehfarahat@gmail.com

(S.F. Desouky), schwartz@sce.carleton.ca (H.M. Schwartz).

a hybrid learning approach that combines a neuro-fuzzy system
with RL in a two-phase structure applied to an obstacle avoidance
mobile robot. In phase 1, supervised learning is used to tune the
parameters of a FLC then in phase 2, RL is employed so that the
system can re-adapt to a new environment. The limitation in their
approach is that if the training data are hard or expensive to obtain
then supervised learning cannot be applied. In [21], the authors
overcame this limitation by using Q-learning as an expert to obtain
training data. Then the training data are used to tune the weights
of an artificial neural network controller applied to a mobile robot
path planning problem.

In [22], a multi-robot pursuit–evasion game is investigated. The
model consists of a combination of aerial and ground vehicles.
However, the unmanned vehicles are not learning. They just do the
actions they received from a central computer system. In [23], the
use of RL in the multi-agent pursuit–evasion problem is discussed.
The individual agents learn a particular pursuit strategy. However,
the authors do not use a realistic robot model or robot control
structure. In [24], RL is used to tune the output parameters of a
FLC in a pursuit–evasion game.

A number of articles used the fuzzy inference system (FIS) as
a function approximation with Q-learning [25–28] however these
works have the following disadvantages: (i) the action space is
considered to be discrete and (ii) only the output parameters of
the FIS are tuned.

1.2. Paper motivation

The problem assigned in this paper is that we assume that
the pursuer/evader does not know its control strategy. It is not
told which actions to take so as to be able to optimize its control

0921-8890/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2010.09.006

http://dx.doi.org/10.1016/j.robot.2010.09.006
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:sameh@sce.carleton.ca
mailto:samehfarahat@gmail.com
mailto:schwartz@sce.carleton.ca
http://dx.doi.org/10.1016/j.robot.2010.09.006


S.F. Desouky, H.M. Schwartz / Robotics and Autonomous Systems 59 (2011) 22–33 23

Fig. 1. The proposed QLFIS technique.

strategy. We assume that we do not even have a simplistic PD
controller strategy. The learning goal is tomake the pursuer/evader
able to self-learn its control strategy. It should do that on-line by
interaction with the evader/pursuer.

From several learning techniques we choose RL. RL methods
learnwithout a teacher,without anybody telling themhow to solve
the problem. RL is related to problems where the learning agent
does not knowwhat it must do. It is the most appropriate learning
technique for our problem.

However, using RL alone, in most cases, has the limitation in
that it is too hard to visit all the state–action pairs. We try to
cover most of the state–action space but we cannot cover all the
space. In addition, there are hidden states that are not taken into
consideration due to the discretization process. Hence RL alone
cannot find the optimal strategy.

The proposed Q(λ)-learning based genetic fuzzy controller
(QLBGFC) and the proposed Q(λ)-learning fuzzy inference system
(QLFIS) are two novel techniques used to solve the limitation in RL.
The limitation is that the RL method is designed only for discrete
state–action spaces. Sincewewant to use RL in the robotics domain
which is a continuous domain, then we need to use some type
of function approximation such as FIS to generalize the discrete
state–action space into a continuous state–action space. Therefore,
from the RL point of view, a FIS is used as a function approximation
to compensate for the limitation in RL. And from the FIS point of
view, RL is used to tune the input and/or the output parameters of
the fuzzy system especially if the model is partially or completely
unknown. Also, in some cases it is hard or expensive to get a priori
training data or a teacher to learn from. In this case, the FIS is
used as an adaptive controller whose parameters are tuned on-
line by RL. Therefore, combining RL and FIS has two objectives; to
compensate the limitation in RL and to tune the parameters of the
FLC.

In this paper, we design a self-learning FLC using the proposed
QLFIS and the proposed QLBGFC. The proposed QLBGFC is used
when the state and the action spaces can be discretized in such
a way that make the resulting state and action spaces have accept-
able dimensions. This can be done, as we will see in our case, if the
state and the action values are bounded. If not then the proposed
QLFIS will be suitable. In this work and for the comparatively pur-
pose, we will use both of the proposed techniques.

The learning process in the proposed QLFIS is performed
simultaneously as shown in Fig. 1. The proposed QLFIS is used
directly with the continuous state and action spaces. The FIS is
used as a function approximation to estimate the optimal action-
value function, Q ∗(s, a), in the continuous state and action spaces
while the Q(λ)-learning is used to tune the input and the output
parameters of both the FIS and the FLC.

In the proposed QLBGFC, the learning process is performed
sequentially as shown in Fig. 2. The proposed QLBGFC can be
considered as indirect method of using function approximation.
First, in phase 1, the state and the action spaces are discretized and
Q(λ)-learning is used to obtain an estimate of the desired training

Fig. 2. The proposed QLBGFC technique.

Fig. 3. Agent–environment interaction in RL.

data set, (s, a∗). Then this training data set is used by genetic
algorithms (GAs) in phase 2 stage 1 to tune the input and the
output parameters of the FLC which are used at the same time to
generalize the discrete state and action values over the continuous
state and action spaces. Finally in phase 2 stage 2, the FLC is further
tuned during the interaction between the pursuer and the evader.

The proposed techniques are applied to two pursuit–evasion
games. In the first game, we assume that the pursuer does not
know its control strategy whereas in the second game, we increase
the complexity of the system by assuming that both the pursuer
and the evader do not know their control strategies or the other’s
control strategy.

The rest of this paper is organized as follows: some basic ter-
minologies for RL, FIS and GAs are reviewed in Section 2, Sec-
tion 3 and Section 4, respectively. In Section 5, the pursuit–evasion
game is described. The proposed QLFIS and the proposed QLBGFC
techniques are described in Section 6 and Section 7, respectively.
Section 8 presents the computer simulation and the results are dis-
cussed in Section 9. Finally, conclusion and future work are dis-
cussed in Section 10.

2. Reinforcement learning

Agent–environment interaction in RL is shown in Fig. 3 [12]. It
consists mainly of two blocks, an agent which tries to take actions
so as to maximize the discounted return, R, and an environment
which provides the agent with rewards. The discounted return, Rt ,
at time t is defined as

Rt =

τ−
k=0

γ krt+k+1 (1)



Download English Version:

https://daneshyari.com/en/article/412618

Download Persian Version:

https://daneshyari.com/article/412618

Daneshyari.com

https://daneshyari.com/en/article/412618
https://daneshyari.com/article/412618
https://daneshyari.com

