
Robotics and Autonomous Systems 58 (2010) 1017–1027

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Fuzzy logic path tracking control for autonomous non-holonomic mobile robots:
Design of System on a Chip
S.G. Tzafestas, K.M. Deliparaschos, G.P. Moustris ∗
Intelligent Automation Systems Research Group, School of Electrical and Computer Engineering, National Technical University of Athens, Zographou Campus, Athens, GR 157 73,
Greece

a r t i c l e i n f o

Article history:
Received 29 March 2009
Received in revised form
26 March 2010
Accepted 31 March 2010
Available online 22 April 2010

Keywords:
Path tracking
Fuzzy logic
Mobile robots
Digital Fuzzy Logic Controller (DFLC)
System-on-a-Chip (SoC)

a b s t r a c t

This paper presents a System on Chip (SoC) for the path following task of autonomous non-holonomic
mobile robots. The SoC consists of a parameterized Digital Fuzzy Logic Controller (DFLC) core and a flow
control algorithm that runs under the XilinxMicroblaze soft processor core. The fuzzy controller supports
a fuzzy path tracking algorithm introduced by the authors. The FPGA board hosting the SoC was attached
to an actual differential-drive Pioneer 3-DX8 robot, which was used in field experiments in order to
assess the overall performance of the tracking scheme. Moreover, quantization problems and limitations
imposed by the system configuration are also discussed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

This work presents a System on Chip (SoC) implementation
for the robot path tracking task using fuzzy logic. The major
components the SoC is composed of, are a parameterized Digital
Fuzzy Logic Controller (DFLC) soft IP core [1,2], implementing the
fuzzy tracking algorithm, and a Xilinx Microblaze soft processor
core as the top level flow controller. The FPGA board hosting the
SoC was mounted to an actual differential-drive Pioneer 3-DX8
robot, which was used in experiments of the tracking scheme.
FPGAs provide several advantages over single processor hard-

ware, on the one hand, and Application Specific Integrated Circuits
(ASIC) on the other. FPGA chips are field-upgradable and do not
require the time and expense involved with ASIC redesign. Being
reconfigurable, FPGA chips are able to keep up with future modi-
fications that might be necessary. They offer a simpler design cy-
cle, reprogrammability, and have a faster time-to-market, since no
fabrication (layout, masks, or other manufacturing steps) time is
required, when compared to ASICs.
A design on an FPGA could be thought as a ‘‘hard’’ imple-

mentation of program execution. The Processor based systems of-
ten involve several layers of abstraction to help schedule tasks

∗ Corresponding author.
E-mail addresses: tzafesta@softlab.ntua.gr (S.G. Tzafestas), kdelip@mail.ntua.gr

(K.M. Deliparaschos), gmoustri@central.ntua.gr (G.P. Moustris).
URL: http://www.ece.ntua.gr/images/pages/ias

(S.G. Tzafestas, K.M. Deliparaschos, G.P. Moustris).

and share resources among multiple processes. The driver layer
controls hardware resources and the operating system manages
memory and processor bandwidth. Any given processor core can
execute only one instruction at a time, and processor based sys-
tems are continually at risk of time critical tasks preempting one
another. FPGAs on the other hand do not use operating systems,
and minimize reliability concerns with true parallel execution and
deterministic hardware dedicated to every task. Today’s FPGAs
contain hundreds of powerful DSP slices reaching frequencies up
to 500 MHz outperforming DSP and RISC processors by a factor of
100 to 1000. Taking advantage of hardware parallelism, FPGAs ex-
ceed the computing power of digital signal processors (DSPs) by
breaking the paradigm of sequential execution and accomplishing
more per clock cycle.
The use of field programmable gate arrays in robotic applica-

tions is noted in [3–6] by several other researchers. A review of
the application of FPGAs in robotic systems is provided be Leong
and Tsoi in [3]. A notable case study is the use of FPGAs in theMars
Pathfinder,Mars Surveyor ’98, andMars Surveyor ’01 Lander crafts,
analyzed in [6].
Due to an increased number of calculations necessary for the

path tracking control, a high performance processing system to
efficiently handle the task is required. By using a SoC realized on an
FPGA device, we utilize the hardware/software re-configurability
of the FPGA to satisfy the needs of fuzzy logic path tracking
for autonomous robots for high-performance onboard processing
and flexible hardware for different tasks. Software Fuzzy Logic
Controller (FLC) implementations suffer from speed limitations

0921-8890/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2010.03.014

http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:tzafesta@softlab.ntua.gr
mailto:kdelip@mail.ntua.gr
mailto:gmoustri@central.ntua.gr
http://www.ece.ntua.gr/images/pages/ias
http://www.ece.ntua.gr/images/pages/ias
http://www.ece.ntua.gr/images/pages/ias
http://www.ece.ntua.gr/images/pages/ias
http://www.ece.ntua.gr/images/pages/ias
http://www.ece.ntua.gr/images/pages/ias
http://www.ece.ntua.gr/images/pages/ias
http://www.ece.ntua.gr/images/pages/ias
http://dx.doi.org/10.1016/j.robot.2010.03.014


1018 S.G. Tzafestas et al. / Robotics and Autonomous Systems 58 (2010) 1017–1027

Fig. 1. Overview of the System.

due to the sequential program execution and the fact that
standard processors do not directly supportmany fuzzy operations
(i.e., minimum or maximum). In an effort to reduce the lack
of fuzzy operations, several modified architectures of standard
processors to support fuzzy computation exist [7–9]. Software
solutions running on these devices speeds up fuzzy computation
by at least one order of magnitude over standard processors,
but are still not fast enough for some real-time applications; a
dedicated hardware implementation [10] must be used.
In our application the DFLC facilitates scaling and can be

configured for different numbers of inputs and outputs, numbers
of triangular or trapezoidal fuzzy sets per input, numbers of
singletons per output, antecedent method (t-norm, s-norm),
divider type, and numbers of pipeline registers for the various
components in the model. This parameterization enabled the
creation of a generic DFLC soft IP core that was used to produce
a fuzzy controller of different specifications without the need of
redesigning the IP from the beginning. The fuzzy logic controller
architecture assumes overlap of two fuzzy sets among adjoining
fuzzy sets, and requires 2n (n is the number of inputs) clock cycles
at the core frequency speed in order to sample the input data (input
sample rate of 56.34 ns), since it processes one active rule per clock
cycle. In its present form the SoC design achieves a core frequency
speed of 71 MHz. To achieve this timing result, the latency of the
chip architecture involves 9 pipeline stages each one requiring
14.085 ns. The featured DFLC IP is based on a simple algorithm
similar to the zero-order Takagi–Sugeno inference scheme and
the weighted average defuzzification method. By using the chosen
parameters of Table 2, it employs two 12-bit inputs and one 12-bit
output, 9 triangular membership functions (MFs) per input and 5
singleton MFs at the output with 8-bit and 12-bit degree of truth
resolution respectively. The rule base consists of 81 rules.
The fuzzy tracking algorithm used, is based on a previous

fuzzy path tracker developed by the authors [11]. The fuzzy
logic (FL) tracker has undergone some alterations due to the
hardware restrictions posed by the DFLC soft IP core. While the
original fuzzy logic controller (FLC) was of the Mamdani-type with
Gaussian membership functions, the one deployed here is of the
Takagi–Sugeno zero-order type FLC with triangular membership
functions and an overlap of two between adjacent membership
functions. Besides the FLC, the ‘‘spatial window’’ technique used in
the previous paper [11] has also been incorporated in the tracking
scheme.

2. Overview of the system

Four cooperative functional units properly tied together
integrate the system. An overview can be seen in Fig. 1, and an
actual picture of the system in Fig. 13.
The SoC implements the autonomous control logic of the P3

robot. It receives odometry information from the robot and issues
steering commands outputted by the FL tracker. The SoC realizes
several other tasks besides the steering control; namely it decodes
the information packets sent by the robot, which include the pose
estimation done by the robot, the status of the motors, sonar

readings etc, and encodes the steering commands in a data frame
that is accepted by the robot. In other words, the SoC implements a
codec for the I/O communication with the P3 robot. Furthermore,
it also relays some critical information to a MATLAB monitoring
application that has been developed. The top-level program that
attends to all these tasks is written in C and executed by the
Microblaze soft processor core. This top-level program also treats
synchronization and timing requirements.
A MATLAB application was developed for monitoring and

initialization purposes. It communicates with the FPGA board
through a bridged USB connection and displays information about
the robot’s pose and speed, as estimated by the robot’s odometry,
as well as some other data used for the path tracking control.
It also calculates the robot’s position relative to the world and
the local coordinate systems. Another important function of the
application is to provide a path for the robot to track. Given
that there is no path planning routine implemented in this work,
the path is drawn in the GUI by hand as a sequence of points.
Consequently the program uses a linear interpolation scheme to
produce all the data samples of the path under a fixed sampling
spacing, i.e., the distance between two sample points on the
path is constant. The application allows choosing the number
of interpolation points. The aforementioned interpolation routine
was chosen after field observations on different interpolation
schemes such as polynomial, cubic and linear and produced the
best results.
The test platformonwhich the SoCwas tested is the ActivMedia

P3-DX8 robot [12]. The robot uses 1 mm resolution for the
position estimation and 1◦ angle resolution for the heading. The
kinematics of the robot are emulated to a bounded curvature
steering vehicle and not that of a differential drive one, i.e., there is
an imposed constraint on themaximum curvature it can turnwith.
This has been introduced because the fuzzy tracking algorithm
was intended for the Dubin’s Car model [13] where there is a
minimum turning radius constraint on the robot and only for
forward motion. As will be explained in a later section, the
curvature constraint along with the one degree resolution of the
P3 robot presents a quantization problem to the curvature. The
robot connects to the FPGA board through a serial cable to send
and receive framed data. ActivMedia uses its own data framing
protocol handled by the robot’smicrocontroller. The data sent from
the robot are called Server Information Packets (SIP packets) while
the received data are called Command Packets. More information
on the data framing protocol can be found in the robot’s manual
[12, pp.33-36]. The experiments showed clearly that even though
the FL tracker performs well, its actual performance is severely
degraded by the accumulation of odometry errors over time.
Several calibration tests have been carried out in order to improve
odometry localization but, as it was expected, position estimation
through odometry proved inefficient.

3. Fuzzy logic path tracking algorithm

The tracking problem can be formulated in the following way;
letΣ be a system described by Eq. (1),

ẋ = f (t, x, u)
y = h(t, x, u) (1)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector and y ∈
Rk is the output vector. Let xr(t) be a feasible reference trajectory
in the state space that satisfies Eq(1). This solution corresponds to
a reference input ur i.e., ẋr = f (t, xr , ur). Find a feedback law u =
u(t, x, xr , ur) such that limt→∞(x(t)−xr(t)) = 0. The path tracking
problem can be formulated in the same manner except that the
goal is to track the image of the reference trajectory xr(t). In such
a setting, the image admits a reparametrization according to some



Download	English	Version:

https://daneshyari.com/en/article/412645

Download	Persian	Version:

https://daneshyari.com/article/412645

Daneshyari.com

https://daneshyari.com/en/article/412645
https://daneshyari.com/article/412645
https://daneshyari.com/

