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In this paper, a finite-horizon neuro-optimal tracking control strategy for a class of discrete-time
nonlinear systems is proposed. Through system transformation, the optimal tracking problem is
converted into designing a finite-horizon optimal regulator for the tracking error dynamics. Then, with
convergence analysis in terms of cost function and control law, the iterative adaptive dynamic
programming (ADP) algorithm via heuristic dynamic programming (HDP) technique is introduced to
obtain the finite-horizon optimal tracking controller which makes the cost function close to its optimal
value within an &-error bound. Three neural networks are used as parametric structures to implement
the algorithm, which aims at approximating the cost function, the control law, and the error dynamics,
respectively. Two simulation examples are included to complement the theoretical discussions.
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1. Introduction

It is well known that the optimal tracking control problem has
been the focus of control systems community for several decades
since it is usually encountered in real world systems [1-3]. In the
case of infinite-horizon optimal tracking control, the system will
not be tracked until the time reaches infinity, while for the finite
case, the system must be tracked to a reference trajectory in a
finite duration of time. Since many limitations exist in traditional
optimal tracking control approaches, such as plant inversion [2]
and linearization [3], it is necessary to design direct optimal
tracking control schemes for nonlinear systems. In this paper, we
will study how to solve this problem through the framework of
Hamilton-Jacobi-Bellman (HJB) [4] equation from optimal con-
trol theory. Unlike the open-loop optimal controller design for
nonlinear systems, however, for closed-loop optimal feedback con-
trol, it is difficult to solve directly the time-varying HJB equation
which involves solving either nonlinear partial difference or differ-
ential equations. Though dynamic programming (DP) has been an
useful computational technique in solving optimal control problems
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for many years, it is often computationally untenable to run it to
obtain the optimal solution due to the “curse of dimensionality” [5].

As Poggio and Girosi [6] stated, the problem of learning between
input and output spaces is equivalent to that of synthesizing an
associative memory that retrieves appropriate output when the
input is present and generalizes when a new input is applied. With
strong capabilities of self-learning and adaptivity, artificial neural
networks (ANN or NN) are an effective tool for implementing
intelligent control [7-10]. Besides, it has been used for universal
function approximation in adaptive/approximate dynamic pro-
gramming (ADP) algorithms, which were proposed in [9-11] as a
method for solving optimal control problems forward-in-time.
There are several synonyms used for ADP including “adaptive
dynamic programming” [12-14], “approximate dynamic program-
ming” [9,15,16], “neuro-dynamic programming” [17], “neural
dynamic programming” (NDP) [18], “adaptive critic designs” [19],
and “reinforcement learning” [15,20]. As an effective intelligent
control method, ADP and the related research have gained much
attention from researchers [9-19,21-35]. Very good surveys were
given in Wang et al. [13], Lewis and Vrabie [14], and Balakrishnan
et al. [25]. According to [9,19], ADP approaches were classified into
several main schemes: heuristic dynamic programming (HDP),
action-dependent HDP (ADHDP), also known as Q-learning [20],
dual heuristic dynamic programming (DHP), ADDHP, globalized
DHP (GDHP), and ADGDHP. Al-Tamimi et al. [16] proposed a greedy
HDP algorithm to solve the discrete-time HJB (DTHJB) equation for
optimal control of nonlinear systems. Wang et al. [23] developed an
&-ADP algorithm for studying finite-horizon optimal control of
discrete-time nonlinear systems.
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With the rapid development of NN technology and recently, the
ADP method, various new strategies were devised to deal with the
optimal tracking control problems. Park et al. [36] used the multi-
layer NN to design an optimal tracking neuro-controller for dis-
crete-time nonlinear systems with quadratic cost function. Zhang
et al. [32] gave a novel infinite-horizon optimal tracking control
scheme for discrete-time nonlinear systems via greedy HDP algo-
rithm. Dierks and Jagannathan [31] utilized the NDP technique to
solve the HJB equation forward-in-time for optimal tracking control
of affine nonlinear systems. However, to the best of our knowledge,
there is still no result to solve the finite-horizon optimal tracking
control problem for discrete-time nonlinear systems based on
iterative ADP algorithm via HDP technique (iterative HDP algorithm
for brief). In this paper, for the first time, we will provide an
iterative ADP algorithm to design finite-horizon near-optimal
tracking controller for a class of discrete-time nonlinear systems.

The rest of this paper is organized as follows. In Section 2, we
present the problem statement, transform the finite-horizon
optimal tracking control problem into an optimal regulation
problem, and introduce the DTHJB equation for nonlinear sys-
tems. Section 3 starts by deriving the iterative ADP algorithm
with convergence analysis, and then the finite-horizon optimal
tracking control scheme is proposed which makes the cost
function close to its optimal value within an e-error bound. In
Section 4, the NN implementation of the iterative ADP algorithm
is presented. In Section 5, two examples are given to substantiate
the theoretical results. Section 6 contains concluding remarks.

2. Problem statement

Consider the discrete-time nonlinear systems given by
X1 =f(xi) +gxi)up(xk), )]

where x; € R" is the state, u,(x;) e R™ is the control vector, f(-) and
g(-) are differentiable in their argument with f(0) = 0. Assume that
f+gu, is Lipschitz continuous on a set Q in R" containing the
origin, and that the system (1) is controllable in the sense that
there exists a continuous control on  that asymptotically
stabilizes the system. In the following part, u,(x;) is denoted by
upk for simplicity.

The objective for optimal tracking control problem is to
determine optimal control law uj, so as to make the nonlinear
system (1) to track a reference (or desired) trajectory r, in an
optimal manner. Here, we assume that the reference trajectory ry
satisfies

Tey1 = Pry), )
where 1, e R" and ¢(r;) € R". Then, we define the tracking error as
€ =Xk —Tg- (3)

Inspired by the work of [31,32,36], we define the steady
control corresponding to the reference trajectory ry as

Ugk =&~ (D) —f (1)), 4

where g=1(r)g(r) = I, and I, is an m x m identity matrix.
By denoting

Uy = Up—Ugk &)
and using (1)-(4), we obtain

exr1 =f(ex+1)+8Er+1g™ (1) (P,
—f(r)— (/)(rk) +g(er+T)ug (6)
Tk = P(y)

as the new system. Note that in system (6), e, and ry are regarded
as the system variables while u is seen as system input. The

second equation of system (6) only gives the evolution of the
reference trajectory which is not affected by the system input.
Therefore, for simplicity, (6) can be rewritten as

er+1 = F(eg,Uy). (7)

Now, let e be an initial state of system (7) and define uf~' =
(ug,u1, ...,uy_1) be a control sequence with which the system (7)
gives a trajectory starting from eg: e, ey, ..., ex. We call the number
of elements in the control sequence uf~' the length of u}~' and
denote it as |uf~'|. Then, [u}~'|=N. The final state under the
control sequence uj~! is denoted as e®)(eg,uN=1) =ey.

Definition 1. A nonlinear dynamical system is said to be stabiliz-
able on a compact set Q e R, if for all initial conditions eg e 2,
there exists a control sequence %"*1 = (U, U1, ..., Un_1), Uj € R™,
i=0,1,...,N—1, such that the state e()(ep,u}~1)=0.

Let gg* = (Ug,Ug 41, ---,Uy_1) be the control sequence starting
at k with length N—k. For finite-horizon optimal tracking control
problem, it is desired to find the control sequence which mini-
mizes the following cost function:

N-1

Jeuy™h=">"U(e;u, ®)
i=k

where U is the utility function, U(0, 0) = 0, U(e;,u;) > 0 for ve;,u;. In

this paper, the utility function is chosen as the quadratic form as

follows:

U(e;,u;) = el Qe; +ul Ru;.

This quadratic cost function can not only force the system state to
follow the reference trajectory, but also force the system input to
be close to the steady value in maintaining the state to its
reference value. In fact, it can also be expressed as

Qo0
0 O]

€;

Utes,up) = [ef 1] [ r

+ul Ru;,

when considered from the angle of system (6).

In this sense, the nonlinear tracking problem is converted into
a regulation problem and the finite-horizon cost function for
tracking is written in terms of e, and u,. Then, the problem of
solving the finite-horizon optimal tracking control law ujy for
system (1) is transformed into seeking the finite-horizon optimal
control law u* for system (7) with respect to (8). As a result, we
will focus on how to design u* in the following sections.

For finite-horizon optimal control problems, the designed feed-
back control must be finite-horizon admissible, which means it must
not only stabilize the controlled system on 2 within finite number of
time steps but also guarantee the cost function to be finite.

Definition 2. A control sequence ul~! is said to be finite- horizon
admissible for a state e, e R" with respect to (8) on Q if uf~! is
continuous on a compact set @, e R, u(0)=0, e"(e,,ul~1=0
and J(e,,uf~") is finite.

Let
W, = {u,:eP(e,u,) =0}

be the set of all finite-horizon admissible control sequences of e
and

i k+i-1. k+i—1 k+i-1 .
AY = (uf 1 eD (e uf T =0, uf T =)

be the set of all finite-horizon admissible control sequences of ey
with length i. Define the optimal cost function as

J¥(e) = infy, {J(epu,):u, € A ). €)
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