
Robotics and Autonomous Systems 61 (2013) 704–713

Contents lists available at SciVerse ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

End-user programming architecture facilitates the uptake of robots in
social therapies
E.I. Barakova a,∗, J.C.C. Gillesen a, B.E.B.M. Huskens b, T. Lourens c

a Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands
b Dr. Leo Kannerhuis Doorwerth, The Netherlands
c TiViPE, Kanaaldijk ZW 11, Helmond, The Netherlands

a r t i c l e i n f o

Article history:
Available online 20 August 2012

Keywords:
Robot control
Graphical programming
End-user programming
TiViPE

a b s t r a c t

This paper proposes an architecture thatmakes programming of robot behavior of an arbitrary complexity
possible for end-users and shows the technical solutions in away that is easy to understand and generalize
to different situations. It aims to facilitate the uptake and actual use of robot technologies in therapies
for training social skills to autistic children. However, the framework is easy to generalize for an arbitrary
human–robot interaction application, where users with no technical background need to program robots,
i.e. in various assistive robotics applications. We identified the main needs of end-user programming of
robots as a basic prerequisite for the uptake of robots in assistive applications. These are reusability,
modularity, affordances for natural interaction and the ease of use. After reviewing the shortcomings
of the existing architectures, we developed an initial architecture according to these principles and
embedded it in a robot platform. Further, we used a co-creation process to develop and concretize the
architecture to facilitate solutions and create affordances for robot specialists and therapists. Several pilot
tests showed that different user groups, including therapistswith general computer skills and adolescents
with autism couldmake simple training or general behavioral scenarioswithin 1 h, by connecting existing
behavioral blocks and by typing textual robot commands for fine-tuning the behaviors. In addition, this
paper explains the basic concepts behind the TiViPE based robot control platform, and gives guidelines
for choosing the robot programming tool and designing end-user platforms for robots.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The uptake of robots as assistive tools in clinics and households,
and in education will not become a reality before the robot’s
control is intuitive to everybody. Although some easy-to-use tools
for programming of robots exist [1,2], the major hurdle for using
robots in everyday life is the difficulty to combine the expertise
of robot programmers and developers and the domain specialists
in the way that robots can be used to the state of the art of their
performance by end users. To address this problemwe first select a
concrete use case of training social skills to autistic children which
defines the users of these assistive robots, namely the therapists as
a primary user group that has the potential to facilitate the uptake
of robots in this therapy, and the children and their parents as the
second user group with no direct preference for this facilitation.
Afterwards, we apply a participatory co-creation process that

∗ Corresponding author. Tel.: +31 402473563.
E-mail addresses: e.i.barakova@tue.nl (E.I. Barakova), j.c.c.gillesen@tue.nl

(J.C.C. Gillesen), b.huskens@leokannerhuis.nl (B.E.B.M. Huskens), tino@tivipe.com
(T. Lourens).

combines (1) a user centered design of a platform to support
therapists to create and share behavioral training scenarios with
robots and (2) acquisition of domain specific knowledge from
the therapists in order to design robot–child interaction scenarios
that accomplish specific learning goals [3,4]. The two aspects of
the co-creation process are mutually dependent and therefore
require an iterative design of a technological platform that will
make gradual steps towards creating optimal affordances for
therapists to create and share robot-mediated scenarios. So far
different frameworks for controlling robots like the subsumption
architecture of Brooks [5], or a three layered approach of reaction-
control, sequencing, and deliberating/planning, emerged [6,7].
More recently, a number of researchers have developed executives
that emphasize model-based approaches and deep integration
of automated planning. For instance, constraint-based temporal
planning (CTP) [8], and the extent to which it exploits automated
planning and plan-based reasoning techniques is at the core
of execution. CTP has been applied in a number of practical
applications, e.g. [9].

The software architecture’s taxonomy, used to implement these
approaches, i.e. the ways to put the guidelines as proposed by
the frameworks together in a functioning system is less clear.

0921-8890/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2012.08.001

http://dx.doi.org/10.1016/j.robot.2012.08.001
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:e.i.barakova@tue.nl
mailto:j.c.c.gillesen@tue.nl
mailto:b.huskens@leokannerhuis.nl
mailto:tino@tivipe.com
http://dx.doi.org/10.1016/j.robot.2012.08.001


E.I. Barakova et al. / Robotics and Autonomous Systems 61 (2013) 704–713 705

One reason why this is a problem is that there is no agreement
on what the space of possible control software architectures is
like, nor on the terminology for describing architectures or on
criteria for evaluating and comparing them [10]. Objectively, in all
these control software architectures, the burden is on the robot
programmer to come upwith details on how desired behaviors are
to be accomplished. This becomes increasingly difficult as robots
and their applications become more complex.

Wedistinguish twogroups of robot software architectures,with
respect to the user requirements. The first group is developed
by robot developers and computer scientists and can be used
exclusively in this community. Examples of such platforms are ROS
Orca, URBI, and YARP. A common characteristic of these platforms
is that they are difficult to use by non experienced programmers,
and often they are developed solely for a UNIX platform, which is
commonly used by peoplewith a background in the exact sciences.

These software architectures can cope with multiple processes
running on different machines, often with different operating
systems and hardware. A recent development is the ROS open
source operating system for robotics [11]. A ROS runtime graph
is a peer-to-peer network of processes that are loosely coupled
using the ROS communication infrastructure. ROS is a distributed
framework of processes that enables executables to be individually
designed and loosely coupled at runtime, and aims to support
multiple textual programming languages. Yet Another Robot
Platform (YARP) also supports building of a robot control system
as a collection of programs communicating in a peer-to-peer way.
Its main focus is on long-term software development [12,13].
The Open RObot COntrol Software (OROCOS) focuses on thread-
safe and real time communication between tasks [14]. Orca,
initially part of the Orocos project, is an open-source framework
for developing component-based robotic systems. It provides the
means for defining and developing the building-blocks which can
be connected to form arbitrarily complex robotic systems, from
single vehicles to distributed sensor networks [15]. The creators
of Orca make a comparison between seven different robotics
software systems [16], and conclude that: one hopes to integrate
existing software modules within a software framework. The second
group of robot programming architectures from the point of
view of usability have elements of end-user programs, such as
a graphical interface [2,1]. The merit of visual programming as
expressed by Microsoft

R⃝

using their Robotics Developer Studio is
that non-programmers can create robot applications using a visual
programming environment and a Visual Programming Language
enables anyone to create and debug robotics programs very
easily by just selecting the behavioral blocks from a menu, and
connecting them in the desired flow of actions. The existing visual
programming environments are rather simple and allow the user
to connect the existing blocks but creation of novel behaviors is
practically impossible for a non-specialist. To address the major
shortcomings from the two clusters of platforms we adopted
TiViPE which is a graphical programming environment [17], that
emphasizes on the integration of existing software routines from
(existing) libraries without additional programming. TiViPE also
covers the aspects of multiple processes on multiple (embedded)
computers, peer-to-peer communication, graphical programming,
massively parallel (GPU) processing, and multiple operating
system support [17]. Another platform that attempts to integrate
the advantages of the two groups of approaches by providing a
standard robotics interface through a low level language is the
Universal Robotic Body Interface (URBI) [18]. However, TiVIPE,
has the advantage of providing an advanced end-user interface.
The interface of TiViPE uses colored blocks that are connected by
clicking on the icon, while the textual robotics command language
used within TiViPE allows a user to get more fine grained control
over a robot by either typing these commands or using and

connecting available graphical blocks. In addition a substantial set
of modules for sensory data processing is available within TiVIPE.

Starting from the existing TiViPE programming environment
that already had a modular structure and components for reading
sensory information, an architecture capable of controlling robots
and able to meet the challenges of the particular application
domain was developed. The user group of therapists in autism
practice who want to use robots to train social skills to autistic
children define the requirements for the architecture in the needs
to create and change training scenarios for autistic children.
The issue of creating meaningful training sessions with a robot
has been addressed previously by Bernd and colleagues [19].
However, in this study the therapist was a knowledge provider
and he/she was not meant to take part in the training practice.
Differently, we engaged the therapists in a co-creation process
for the development of scenarios that they would like to use
as an augmentation to their practice. The Therapist-in-the-loop
approach was proposed by Colton and colleagues in [20]. These
authors attempted to engage the children in social interactions
with a team of therapists with the help of the robot. However,
they do not consider designing a programming tool that empowers
therapists to make their own training programs. Our aim is
to engage the autistic children in interaction with therapists
and with other children through a sustainable process that
makes it possible that therapists and eventually parents can by
themselves create, share, and reuse interactive scenarios with
training and entertainment purposes. In this particular paper
we identify the main technical requirements, determined by the
user requirements, for a platform that can support this process
and thus has the potential to facilitate the uptake in robots in
social therapies. We do that by co-developing the programing
architecture to be usable by therapists and other end-users, but
generic enough to make possible implementation of state-of-the-
art robot programming concepts. In addition, this paper can be a
user manual for people that want to use the TiViPE based robot
control platform, and is a contemporary guide for choosing an
appropriate robot programming tool and designing new end-user
platforms.

This paper is organized as follows. First, we define the
requirements for this particular application in Section 2. In
Sections 3–5 we introduce the technical concepts that are able to
meet these requirements. The paper is meant for developers of
user environments as well as end users who want to understand
the basic concepts behind the programming of robot behavior. We
summarize the results of several small pilot tests and the benefits
for the mentioned communities in section 6, where we offer a
discussion for further developments.

2. User requirements for the robot architecture

Autism Spectrum Disorders (ASD) are conditions where no cu-
rative treatments are available, but intensive behavioral inter-
ventions by young children during one year or longer may bring
substantial improvements. Early intensive behavioral intervention
has the greatest amount of empirical support and meets the crite-
ria for evidence-based treatments [21]. Searching for the answer
of how training can benefit by the use of robots, we identified
two intertwined processes: a user centered design of a platform to
support therapists to create and share behavioral training scenar-
ios with robots, and the acquisition of domain specific knowledge
from the therapists in order to design robot–child interaction sce-
narios that accomplish specific learning goals [4].

Although we identified that an effective collaboration be-
tween therapists, robot specialists, software developers and hu-
man–robot interaction researchers is a necessity for an efficient



Download English Version:

https://daneshyari.com/en/article/412674

Download Persian Version:

https://daneshyari.com/article/412674

Daneshyari.com

https://daneshyari.com/en/article/412674
https://daneshyari.com/article/412674
https://daneshyari.com

