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a b s t r a c t

Most of modern multi-objective machine learning methods are based on evolutionary optimization

algorithms. They are known to be global convergent, however, usually deliver nondeterministic results.

In this work we propose the deterministic global solution to a multi-objective problem of supervised

learning with the methodology of nonlinear programming. As the result, the proposed multi-objective

algorithm performs a global search of Pareto-optimal hypotheses in the space of RBF networks,

determining their weights and basis functions. In combination with the Akaike and Bayesian

information criteria, the algorithm demonstrates a high generalization efficiency on several synthetic

and real-world benchmark problems.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Many tasks of intelligent data analysis are covered by the field
of machine learning. As known, solutions to common problems of
machine learning, such as pattern recognition, regression, and
categorization (clustering) always result into trade-offs among
several concurrent objectives of learning. For instance in super-
vised learning, the trade-off between the empirical risk (training
error) and capacity of a hypotheses class (model complexity) is
depicted by the paradigms of Statistical Learning Theory (SLT) [1]
and the bias-variance dilemma [2], playing essential role in the
performance of a learning machine. Namely, the principle of
structural risk minimization (SRM) [3] states that the error and
complexity must be minimized maintaining a certain balance in
order to achieve a solution to the learning problem, characterized
by good generalization properties.

The principle of SRM is usually implemented by means of error
minimization while controlling the complexity of the model. Such
approach is employed in many learning machines, such as neural
networks with weight decay or pruning, regularization networks,
and support vector machines (SVM). They minimize both error and
complexity as a single loss function, whereas the point of balance is
pre-determined by one or several hyperparameters (e.g., regulariza-
tion and kernel parameters). Each choice of hyperparameters
provides only a particular solution (learning hypothesis), which is
not necessary efficient since not all choices of hyperparameters
represent the trade-off between the error and complexity. In
contrast, the principle of Pareto-optimality permits one to express
the complete set of efficient solutions through the multi-criteria

formulation of the learning problem. This approach led to a
development of the multi-objective machine learning (MOML) [4].

A direct application of the Pareto-optimality principle to a
general set of hypotheses usually results in non-convex problems,
whose global solutions are required. Due to NP-complexity of
such problems and difficulties of finding their solutions analyti-
cally, the arsenal of MOML methods went to the field of rapidly
developing evolutionary multi-objective optimization (EMO)
[5,6], as witnessed by the recent review on the subject [7]. In
particular, most MOML algorithms (e.g., [8–12]) emerge from the
genetic population-based approach. As an alternative, applica-
tions of nonlinear programming methods are demonstrated in
[13–15], where the MOML problem of finding Pareto-optimal
hypotheses in the domain of multilayer perceptrons (MLP) is
approached with the so-called MOBJ algorithms.

The MOBJ algorithms are deterministic. However, they rely on
the locally convergent optimization directly applied to generally
non-convex problems, suffering from the problem of local
minima. Hence, the Pareto-optimality is not guaranteed. On the
other hand, the EMO algorithms are based on heuristics, providing
the nondeterministic approximations of Pareto sets with popula-
tions of nondominated elements, which are unable to reach
Pareto-optimality within a guaranteed time.

Despite of high capabilities of EMO, certain multi-objective
problems can be efficiently solved in a deterministic way, taking
advantages of nonlinear programming. In particular, the earlier
proposed in [16] idea of decomposition of the multi-objective
problem into a set of convex subproblems led to a development of
the MOBJ algorithm for finding Pareto-optimal solutions within a
small class of hypotheses of RBF networks. Such an approach
allows to approximate Pareto sets arbitrary well with the
numbers of exact solutions of convex subproblems.

In this work, we provide a deeper study of the previous results
[16] and extend their application to larger classes of hypotheses.
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Specifically, we show the possibility of finding Pareto-optimal
hypothesis within the class of RBF networks of arbitrary
structures. The proposed MOBJ algorithm determines the weights,
widths, and centers of the basis functions as well as their
quantity. Also, a special attention is payed to the problem of
selection of the final solution (model selection) from the wide
spectrum of Pareto-optimal hypotheses.

2. Multi-objective view on supervised learning

Let O be the set of learning hypotheses and f : O-Rr , rAN be
the vector-function of learning objectives. Without loss of general-
ity, we assume that all rZ2 components of f are aimed for
minimization under O. When there exists such a hypothesis f AO
that simultaneously turns all components of f into their global
extrema, the solution to the minimization problem is, obviously, f.
Otherwise, the solution to the multi-objective problem is the set

PðOÞ :¼ ff AOj8f ua f AOðf!f uÞg ð1Þ

of nondominated hypothesis, also known as Pareto set. Here, for
two hypothesis f AO and f uAO we denote f!f u with the meaning
‘‘f strictly dominates f0’’. In our minimization setting, f!f u is true iff

fðf uÞafðf Þ and all components of the difference vector fðf uÞ�fðf Þ
are non-negative. In other words, f!f u is true when the hypothesis
f is not worse than f u, but also is better with respect to at least one
of the objectives. Hence, the nondominated elements represent a
set of solutions which cannot be improved any further, thus, they
are optimal, i.e., Pareto-optimal. The Pareto set can be viewed as
the lower bound of O under the strict partial order relation !,
whereas its geometry can be studied in Rr from its image under f,
denoted as rðOÞ :¼ fðPðOÞÞ, also known as Pareto front.

In particular, we consider the case when O is the set of input–
output mapping functions, corresponding to a certain class of
neural networks. When fe : O-R and fc : O-R are the
empirical risk and model complexity functionals, respectively,
the bi-criteria minimization problem

min
f AO

fðf Þ ¼ ðfeðf Þ,fcðf ÞÞ
T

ð2Þ

corresponds to the supervised learning in its multi-objective
formulation, referred to as MOBJ [13]. When O is an uncountable
set, the Pareto front rðOÞ is a non-increasing curve in R2 and for
some arbitrary f may contain non-convex intervals and disconti-
nuities, as illustrated in Fig. 1.

The Pareto-set PðOÞ usually contain infinite number of elements,
equivalently efficient with respect to f. Thus, it is required to make
a decision towards the final hypothesis from PðOÞ, via application of
a certain posteriori model selection criterion.

3. Approximations of the Pareto set

For generally non-convex objective functions, finding all
Pareto-optimal hypotheses requires a global optimization,
addressing the MOML to a class of NP-complete problems. Thus,
approximate solutions are common in practice. In the evolu-
tionary approach to MOML with genetic algorithms (GA) (e.g.,
[8,9]), the Pareto set PðOÞ is approximated by a finite population
of hypotheses which are getting closer to PðOÞ after each
evolution step. However, the elements of PðOÞ can be analytically
expressed as solutions of the single-objective optimization
problems by means of the so-called scalarization techniques. For
instance, the well-known e�constraint [17] method determines
the Pareto-optimal hypothesis of the MOBJ problem (2) as a
solution of the constrained error minimization problem

min
f AO

feðf Þ

s:t: fcðf Þrei: ð3Þ

The set of solutions of (3), corresponding to a finite sequence of
restriction parameters ðeiÞi, is the subset of PðOÞ, and, thus, is its
finite-set approximation ~P ðOÞDPðOÞ.

Another traditional scalarization method is the weighted-sum.
Namely, when fe and fc are strictly convex on O, the minimiza-
tion of their convex combination

min
f AO

feðf Þþlifcðf Þ ð4Þ

is equivalent to (3) and draws Pareto-optimal elements from (2)
(see e.g., [18, Chapter 3] and [19]).

Noteworthy, the commonly known learning schemes can be
recognized from both (3) and (4). When fc is the measure of
learning capacity of the model associated with f, the e�constraint
(3) solutions for the sequence of parameters 0oe1oe2o . . .o1
minimize empirical risk fe within the structure |�O1 �O2

� . . . �O of the nested subsets Oi ¼ ff AOjfcðf Þoeig, explicitly
implementing the principle of SRM. On the other hand, when (4)
is minimized with fcðf Þ, being a certain smoothness measure of f,
one recovers a certain form of the regularization [20,21] in O.
However, the latter requires a strict convexity of (4) for holding its
equivalence to (2).

Usually, one is interested in O to be a class of universal
approximators, e.g., neural networks of all possible topologies up
to a certain size. Obviously, in this case fe contains multiple local
minima and, consequently, is non-convex on O. Hence, due to the
convexity limitations of the weighted-sum the Pareto set PðOÞ
cannot be entirely approximated with (4), whereas application of
(3) requires globally convergent optimization procedures. Instead,
following the earlier ideas from [16], we propose the decomposi-
tion of the problem domain by the union

O¼
[

i

Oi:

Given that PðPðOÞÞ ¼PðOÞ, one can infer that PðA [ BÞ ¼PðPðAÞ [
PðBÞÞ and thereby find the Pareto set from the relation

PðOÞ ¼P
[

i

PðOiÞ

 !
: ð5Þ

When the subsets Oi are such that fe and fc are strictly convex
under Oi, the elements of PðOiÞ in (5) can be efficiently found by

Fig. 1. Illustration of the Pareto optimality principle: the hypotheses A, B, and

Pareto-optimal C are related as C!B!A.
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