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a b s t r a c t

Various popular machine learning techniques, like support vector machines, are originally conceived for

the solution of two-class (binary) classification problems. However, a large number of real problems

present more than two classes. A common approach to generalize binary learning techniques to solve

problems with more than two classes, also known as multiclass classification problems, consists of

hierarchically decomposing the multiclass problem into multiple binary sub-problems, whose outputs

are combined to define the predicted class. This strategy results in a tree of binary classifiers, where

each internal node corresponds to a binary classifier distinguishing two groups of classes and the leaf

nodes correspond to the problem classes. This paper investigates how measures of the separability

between classes can be employed in the construction of binary-tree-based multiclass classifiers,

adapting the decompositions performed to each particular multiclass problem.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Multiclass classification using machine learning (ML) techni-
ques consists of inducing a function f(x) from a data set composed
of pairs (xi, yi), where each xi is a data item and yiAf1, . . . ,kg,
where k42, corresponds to the desired output or class of xi. Some
popular learning techniques, like support vector machines (SVMs)
[1], were originally proposed to solve binary classification
problems (k¼2).

Two approaches have been followed in the literature for
dealing with multiclass problems using binary classifiers:

� adaptation of the internal operations of the algorithm used to
induce the classifier;
� decomposition of the original multiclass classification problem

into a set of binary (two-class) classification problems.

In this paper, we investigate the second approach. In this
approach, the decomposition may be performed hierarchically,
generating a binary-tree-based multiclass classifier. In general,
the introduction of a hierarchy in a multiclass application can
reduce the complexity involved in its solution. The idea is to

perform more general discriminations first, which are succes-
sively refined until the final classification is obtained.

According to this strategy, the binary predictors and the
problem classes are represented as nodes in a graph or tree. The
root node usually contains a predictor that divides all problem
classes into two groups. These groups are also recursively divided
into two parts each, until one unique class remains.

The hierarchical structure adopted may influence the quality of
the solution in the multiclass problem. Thus, the classes
associated with each node may have a strong influence on the
final classification accuracy. This work investigates the use of
separability measures to define the binary partitions contained in
the hierarchy, allowing to define the tree structure according to
the characteristics of each multiclass data set. The aim was to
investigate how different separability criteria could be used for
defining the binary partitions of classes in a hierarchy. The ability
of each of these criteria in obtaining suitable hierarchical
structures was proven in a controlled set of experiments involving
several benchmark multiclass data sets.

This paper is structured as follows: Section 2 reviews the
main existent approaches for generalizing binary learning
techniques to solve multiclass problems. Section 3 explains how
the binary-tree-based classifiers are built in this work. Section 4
describes the experiments performed in the evaluation of the
obtained trees and analyses the results obtained in these
experiments. Section 5 concludes this paper and provides
suggestions for future works.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2010.03.027

� Corresponding author.

E-mail addresses: ana.lorena@ufabc.edu.br (A.C. Lorena), andre@icmc.usp.br

(A.C. de Carvalho).

Neurocomputing 73 (2010) 2837–2845

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.03.027
mailto:ana.lorena@ufabc.edu.br
mailto:andre@icmc.usp.br
mailto:andre@icmc.usp.br
dx.doi.org/10.1016/j.neucom.2010.03.027


2. Multiclass approaches

As previously mentioned, there are two main approaches for
the generalization of binary ML techniques to deal with multiclass
problems. The first modifies the ML technique training algorithm,
creating multiclass versions of this algorithm. Nevertheless, such
modifications usually are not trivial and may lead to costly
algorithms [2,3]. Consequently, the second alternative, which
decomposes the original problem into several binary sub-
problems, is more frequently employed.

This section presents several decomposition strategies inves-
tigated in the literature. They can be broadly divided into two
groups: code-matrix based and hierarchical.

2.1. Code-matrix strategies

The code-matrix based approach unifies various decomposi-
tion strategies [4], which can be generally represented by a code-
matrix M. Each row of this matrix has a binary code associated
with one of the classes and each column of M is associated with a
binary classifier, defining a binary partition of the k classes for this
particular classifier. Thus, M has k� l dimension, in which l

denotes the number of binary classifiers used. Each element of M
assumes values in the set {�1,0,+1}. An element mij with the
value +1 indicates that the class associated to row i assumes
positive label in the classifier fj’s induction. The value �1
designates a negative label and the value 0 indicates that data
from class i do not participate on the classifier fj induction. Binary
classifiers are trained to learn the labels represented in the
columns of M. Fig. 1 presents examples of code-matrices for a
problem with four classes.

In these strategies, a new data item x is classified by evaluating
the predictions of the l classifiers, which generate a vector
f(x)¼(f1(x),y,fl(x)). This vector is then compared to the rows of
M. The data item is attributed to the class (row) with the closest
code according to some distance measure. This process is also
named decoding.

Several strategies have been employed for the decomposition
of the multiclass problem. Among the most common, one can cite
the one-against-all (OAA) [5], the one-against-one (OAO) [6] and
the use of error correcting output codes (ECOC) [7].

In the OAA strategy (Fig. 1a), given a problem with k classes,
k binary classifiers fi(x) are induced. Each classifier is trained to
distinguish a class i from the others. This technique can be
represented by a k� k matrix, in which the diagonal elements
have the value +1 and the others, the value �1.

In the OAO decomposition (Fig. 1b), kðk�1Þ=2 binary classifiers
are generated. Each classifier discriminates a pair of classes (i,j),
in which ia j. The code-matrix in this case has dimension
k� kðk�1Þ=2 and each column corresponds to a binary classifier
for a pair of classes. In a column representing the pair (i,j), the
value of the element in the row i is +1 and the value of the
member in the row j is �1. All other elements in the column have
the value 0, indicating that instances from the other classes do not
participate in this classifier induction.

In an alternative decomposition strategy, Dieterich and Bariki
[7] proposed the use of error correcting output codes (ECOCs) to
represent the k classes of the multiclass problem. One particular
type of ECOC is produced by an exhaustive method and has
2k�1

�1 columns (Fig. 1c). The code of the first class is composed
of +1 values. For each other class i, in which i41, the code is
composed of alternate runs of 2k� i negative (�1) and positive
(+1) labels.

A common criticism to the OAA, OAO and ECOC strategies is
that all of them decompose the multiclass problem a priori,
without considering the properties and characteristics of the data
sets [4,8]. The tree definition process presented in this work deals
with this problem by considering information from the data set to
build the tree structure.

2.2. Hierarchical strategies

An alternative approach to solve multiclass problems with
binary predictors is to dispose these classifiers in a hierarchical
structure. These structures are composed of nodes and ramifica-
tions. Internal nodes correspond to binary classifiers, the
ramifications represent the possible outputs of these classifiers
and the leaf nodes represent the problem classes.

For the classification of a new instance, the nodes and
ramifications are traversed according to the binary classifications
produced until a leaf node is reached. In order to define the binary
partitions of classes in the hierarchy, which is equivalent to
decompose the multiclass problem into a set of binary problems,
several alternatives might be followed.

A common type of hierarchical structure is a tree, in which,
apart from the root node, each node has just one parent. Fig. 2
illustrates examples of trees for a problem with four classes. The
trees require training k�1 binary classifiers for a problem with
k classes, the lowest number among the decomposition strategies
presented so far. For the test phase, in the best case, depending on
the tree structure, it is possible to classify a data item in the first
node of the tree. In the worst case, the k�1 classifiers have to be
consulted. Therefore, this structure can accelerate the test phase.

For a problem with kZ3 classes, there are
Qk

i ¼ 3 2i�3 distinct
tree structures [9]. Two possible structures for a problem with
four classes are illustrated in Fig. 2. The tree structure may
influence the classification accuracy results. Therefore, it is
necessary to be careful in the definition of the binary partitions
of the classes in each node of the tree. Usually, a specific criterion
is recursively applied to subsets of classes, dividing them into two
until a single class remains.

Schwenker [10,11] used the concept of confusion classes to
define the binary partitions of classes in a tree. This concept leads
to subsets of classes. Each subset presents a high similarity
between its examples. To determine these subsets, Schwenker
[11] recursively applied the k-means algorithm [12], with k equal
to 2. In a digit recognition problem, the classification accuracy
results of the produced tree, using SVMs as base classifiers, were
similar to those of the strategies OAA and OAO.

Takahashi and Abe [13] proposed that nodes in the initial
levels of the tree should divide the most separated classes. They

Fig. 1. (a) OAA, (b) OAO and (c) ECOC code-matrices for a problem with four classes.

A.C. Lorena, A.C.P.L.F. de Carvalho / Neurocomputing 73 (2010) 2837–28452838



Download English Version:

https://daneshyari.com/en/article/412687

Download Persian Version:

https://daneshyari.com/article/412687

Daneshyari.com

https://daneshyari.com/en/article/412687
https://daneshyari.com/article/412687
https://daneshyari.com

