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Cell assemblies (CAs) are central to many higher order cognitive processes such as perception,
recognition and recollection. These processes stem from the fundamental cognitive tasks of
memorisation and association, which CA models are able to perform with a viable degree of biological
realism. This paper describes a virtual agent that uses CAs that emerge from fatiguing leaky integrate
and fire neurons via learning from dynamic interaction. Learning is continuous and the topology is
biologically motivated. The agent is able to visually perceive, learn and play a simplified game of Pong.
It can learn from a user playing the game, or playing on its own. The agent’s memories are encoded in
the form of overlapping CAs that enable it to generalise its associations to account for previously unseen
game moves. The trained agent hits the Pong ball correctly over 90% of the time. This work furthers the
understanding of associative memory and CAs implemented in neural systems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Associative memory is a fundamental cognitive process. Concepts
in memory, and different types of associations between them are
acquired via learning. Associations can vary semantically, for
instance hierarchical associations, sequential associations, contain-
ment associations, spatial associations, and higher level semantic
associations. These concepts and associations that form associative
memory are critical to cognitive processing. Many connectionist
accounts for associative memory exist, but cell assemblies (CAs) [1]
provide a biologically and psychologically realistic basis for
associative memory.

This paper describes a virtual agent modelled in simulated CAs
capable of playing a simplified version of the popular arcade
game, Pong. The agent is able to learn to play the game by
observing a human play, or on its own. The agent learns to
associate input from the environment with actions, thus learning
game moves.

The agent is made entirely from fatiguing Leaky Integrate and
Fire (fLIF) neurons that have a reasonable resemblance to biological
neurons. Unlike many simulations, but like human neurons, learning
remains on at all times.

The agent learns by encoding shared, overlapping associative
memories. This allows generalisation behaviour to emerge, which
further assists the agent in game play by enabling it to carry out
actions in novel situations.
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The paper is organised as follows: Section 2 overviews CAs;
Section 3 discusses the fLIF neural network architecture where
CAs emerge; Section 4 details the simulation and findings; and
Section 5 discusses the impact of the simulation and highlights
the findings.

2. Background

Human associative memory is a remarkable process. Through-
out life, concepts continue to be acquired, learnt and associated.
Any given concept is associated with many other concepts, and
retrieval of an associated concept can be based on a combination
of a range of base concepts with a range of contexts. Many
associative memory models exist, e.g. [2-4], but Hebb’s CA theory
[1] provides an account that is supported by biological and
psychological evidence. CAs exhibit dynamics that provide a
unified explanation for long term memory and various short term
memories as opposed to higher level box models of memory.
There is extensive evidence that CAs are the basis of human
associative memory and many other cognitive phenomena [5-10]
and they have been used in computational models of associative
memory [11-14].

2.1. Cell assemblies

CAs are reverberating circuits of neurons that form the neural
basis of concepts. Hebb’s CA theory postulates that objects, ideas,
stimuli and even abstract concepts are represented in the brain by
the simultaneous activation of large groups of neurons with high
mutual synaptic strengths [1,11]. CAs are learnt by a Hebbian
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learning rule, whereby modifications in the synaptic transmission
efficacy are driven by correlations in the firing activity of pre-
synaptic and post-synaptic neurons [15]. When external stimuli
are presented to a network, synaptic strength between neurons is
adjusted so as to gain more strength if they undergo repeated and
persistent activation or firing, gradually assembling themselves
into a CA. A CA thus formed is bound to the object that generated
the stimuli, a neural representation of that object; the behaviour
of the CA causes psychological behaviour.

Such formation of CAs accounts for long term memory. When a
stimulus similar to previously experienced stimuli occurs, it may
excite a sufficient number of neurons of an existing CA to cause the
spreading of activation within the CA, activating it fully due to
recurrent activity and high mutual synaptic strength. The CA can
remain active even after the stimulus is removed and this
reverberating behaviour accounts for many kinds of short term
memories. Ambiguous stimuli can cause contention between similar
CAs, where lateral inhibition between those CAs causes competition,
with one eventually winning. Thus, the CA hypothesis provides a
functional account for a biologically viable associative memory
mechanism.

There is extensive evidence of CAs in mammals based on a
range of recording techniques and experimental paradigms (see
[5,7] for reviews). CAs can also account for various psychological
phenomena such as sensing [16] and determining action [17],
besides different types of associative memory [18].

2.2. CAs and associative memory

Even though CAs account for memory formation, their precise
neural dynamics are far from perfectly understood. In auto-
associative memories, an initial state is allowed to settle into a
stored memory, allowing subsequent noisy input to retrieve a
stored pattern. The Hopfield Model, which is a network of units
that are well connected with bidirectional weighted connections,
that are used to store a set of binary patterns (typically using a
Hebbian calculation), illustrates this property [19]. When an
initial set of neurons is ignited, in a discrete version of the system,
activation spreads through the system based on the weighted
connections. In most cases, the system will settle into a stable
state with no neurons switching between on and off. If the input
pattern is close to a stored pattern, it will settle into that pattern’s
state, thus functioning as a content-addressable memory or an
auto-associative memory.

Neurons may also belong to more than one CA. Hopfield
patterns that share on-bits are models of CAs that share neurons.
As mentioned in Section 2.1, neurons in a network may belong to
different CAs, and if they are repeatedly co-activated by different
versions of the same stimulus, they tend to become associated [1].
This is based on the notion that events that occur together
repeatedly should somehow belong together. Every time these
events occur in conjunction, they drive certain subgroups of
neurons to fire in correlation, resulting in the association of the
respective events [11]. A more complete review of CA based
associative memory models is [20].

Repeated co-activation of neurons can lead to the formation of
CAs. Similarly, repeated co-activation of multiple CAs result in the
formation of multiple and sequential associations, and even new
CAs. When an external stimulus activates a CA, it may excite
neurons shared with a different CA that is not directly stimulated,
activating it. This forms the rudimentary, neural level explanation
of associative memory.

In prior work, associative memory has been explored with
orthogonal and overlapping CAs. Orthogonal CAs were used to
encode spatial cognitive maps, many-to-many, and context

sensitive associations [18]. With orthogonal CAs, a neuron belongs
to at most one CA, but with overlapping CAs, a neuron may belong
to several CAs. Learnt overlapping CAs can form hierarchical
categories from instances of individuals [21]. The simulations
mentioned in this paragraph use a similar neural and topological
architecture to the one described below.

3. The fLIF CA architecture

A computational model based on fLIF neurons, using a Hebbian
learning mechanism can self-organise to form CAs. Similar to
many existing models, the basic architecture of such a mechan-
ism, explained below, is a simplification of the mammalian neural
architecture.

3.1. The fLIF neuron

The fLIF neuron model is an extension of the Leaky Integrate
and Fire (LIF) model [22,23]. fLIF neurons share many attributes
with their biological counterparts. Like the biological neuron, the
fLIF neuron integrates coincident pre-synaptic potentials until a
critical threshold is reached. On exceeding the threshold, the
neuron produces an action potential, or fires. This potential
further propagates via the neuron’s axonal terminal to incident
post-synaptic neurons, while the firing neuron loses its activation.
The neuron leaks potential if the firing threshold is not attained
for prolonged periods. This leaking behaviour of fLIF neurons is
similar to that of the biological neuron. This can be represented as
follows:

The activation A of a neuron i at time ¢ is

Ai(t-1
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The current total activation A is the sum of incoming activation
and remnant activation from the previous time step t—1 divided
by decay factor ¢ > 1. The incoming activation is the sum of total
neurons that fired at t—1 of all neurons je V;,V; being all pre-
synaptic neurons of i that fired at t—1, weighted by the
connection from neuron j to i.

When the accumulated activation A exceeds the threshold 6,
the neuron fires, losing its potential and thereby resetting A to
zero. Firing is a binary event, and activation of wj; is sent to all
neurons i to which the firing neuron j has a connection.

Fatiguing causes the threshold to be dynamic, 0,1 = 0;+F;. F;
is positive (F. ) if the neuron fires at t and negative (F_) otherwise.
An increase in the threshold causes the total amount of activation
required for neuron firing to increase. Hence, successive firing
reduces the ability of the neuron to fire. Similarly, the threshold
decreases with each step the neuron does not fire, but is never
less than the original threshold.

3.2. Learning

Learning in the fLIF network is dictated by a correlatory
Hebbian learning rule [24], whereby synaptic connection weights
are modified based on the following equation:

AT wy = (1-wy) x A )

Afw,-j =W * - (3)

wjy; is the synaptic weight from neuron i to j and 4 is the learning
rate. During each step, weights change based on the state of pre-
synaptic and post-synaptic neurons. If both neurons fire, the
weights increase as per the Hebbian rule (Eq. (2)). If only the
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