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a b s t r a c t

This paper presents a novel methodology to infer parameters of probabilistic models whose output

noise is a Student-t distribution. The method is an extension of earlier work for models that are linear in

parameters to non-linear multi-layer perceptrons (MLPs). We used an EM algorithm combined with

variational approximation, an evidence procedure, and an optimisation algorithm. The technique was

tested on two forecasting applications. The first one is a synthetic dataset and the second is gas forward

contract prices data from the UK energy market. The results showed that forecasting accuracy is

significantly improved by using Student-t noise models.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

In forecasting models, we generally assume that the data are
corrupted by noise:

yt ¼ f ðxtÞþet ,

where et is a zero-mean probability distribution. Normally, the
noise is assumed to be Gaussian distribution either because of
arguments derived from the central limit theorem or just to
simplify calculations. For example, the log likelihood of a
Gaussian noise model is a quadratic function of the output
variables. This leads to the fact that in the training process, we can
easily estimate the maximum likelihood solution using optimisa-
tion algorithms. Software and frameworks for training machine
learning models such as radial basis functions (RBF), MLP, and
linear regression (LR) with Gaussian noise can be found in [1].
Conversely, other noise models are much less tractable. So why
use the Student-t distribution?

In our previous work [2,3], we used models with Gaussian
noise to forecast gas and electricity forward prices in the UK
energy market. In these experiments, the kurtosis, which is a
measure of how outlier-prone a distribution is, of the residuals
(i.e. the different between target and output of forecasting model)
is between 16 and 17: the kurtosis of the Gaussian distribution
is 3. Furthermore, Pðm�3soromþ3sÞ � 0:982, where m and s
are the mean and standard derivation of the residual, respectively.

The equivalent probability for a Gaussian distribution is 0.997;
therefore, the residual distribution has heavy tails. This means
that the residual distributions are much more outlier-prone than
the Normal distribution. The large number of outliers can make
the training process unreliable and error bar estimates inaccurate,
because Gaussians are sensitive to outliers. It is clear that these
data are not modelled well by a Gaussian distribution as has often
been noted for financial data.

As a consequence, a Student-t distribution can be considered
as a good alternative to a Gaussian because it is a fat-tailed
distribution and is more robust. Moreover, the Student-t distribu-
tion family contains the Normal distribution as a special case.

There are several previous studies of inference with Student-t

models. Tipping and Lawrence proposed a framework for training
an RBF model with fixed basis functions [4]. This study is a fully
Bayesian treatment based on a variational approximation frame-
work. A variational inference scheme was also used for unsuper-
vised learning with mixture models: Bishop and Svensén
presented an algorithm for automatically determining the
number of components in a mixture of t-distribution using a
Bayesian variational framework [5]. In order to obtain a tractable
solution, it was assumed that the latent variables are indepen-
dent, and thus posterior distributions of latent variables can be
factorized. This means that the algorithm does not capture
correlations among the latent variables. Archambeau and Verley-
sen introduced a new variational Bayesian learning algorithm for
Student-t mixture models, in which they removed the assumption
of variable independence [6]. Numerical experiments showed that
their model had a greater robustness to outliers than Bishop and
Svensén’s method in [5].
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This paper presents a novel methodology to infer parameters
of Student-t probabilistic models. This methodology for MAP
estimation is an extension of the technique introduced by Tipping
and Lawrence [4], in which models are assumed to be linear in
parameters. Both approaches are based on a variational approx-
imation. The main advantage of our method is that it is not
limited to models whose output is linearly dependent on model
parameters. On the other hand, our approach provides only MAP
estimates of parameters while Tipping and Lawrence give a fully
Bayesian treatment in which predictions are made by integrating
out all the parameters apart from those defining the t-distribu-
tion, which are optimised. Thus, although our algorithm can be
applied to models that are linear in parameters, we would not
expect it to outperform Tipping and Lawrence, so our discussion
focusses on the MLP.

This paper is organised as follows. In Section 2, Student-t noise
models are presented. Section 3 describes our inference technique
for MLPs. Numerical results on two datasets are given in Section 4.
Section 5 discusses some conclusions.

2. Student-t noise model

We assume that the output data are corrupted by noise with a
Student-t distribution:

yt ¼ f ðxt ,xÞþet ,

where et is a Student-t noise process, and f(xt) is the output
function of a forecast model, which can be a multi-layer
perceptron (MLP), radial basis function (RBF), or linear regression
(LR). In the case of MLP models, the output is non-linear in the
parameters. Conversely, the output is linear in parameters when
the model is LR or RBF. We are not investigating the case where
the independent variables xt are also noisy.

The Student-t distribution can be considered as a mixture of an
infinite number of zero-mean Gaussians with different variances:
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The mixture weight for a given bt is specified by the Gamma
distribution pðbtjc,dÞ. n¼ 2c is called the ‘‘number of degrees of
freedom’’ and s¼

ffiffiffiffiffiffiffiffi
d=c

p
is the scale parameter of the distribution.

The degrees-of-freedom parameter n can be considered as a
robustness tuning parameter [6]. When n tends to infinity, this
distribution converges to a Gaussian. Therefore, the Student-t

noise model still contains the Gaussian as a special case when n is
very large.

3. MAP estimation for MLPs

The aim of our approach is to find maximum a posterior (MAP)
estimates of network and noise model parameters. MAP estima-
tion is not a fully Bayesian treatment because it finds the optimal
parameters of the models instead of integrating over all unknown

parameters. This is equivalent to the type-II maximum likelihood
method [7].

In this paper, we will describe an EM algorithm for training a
model with a Student-t noise model. This training framework can
be use for both ‘‘non-linear in parameters’’ models and ‘‘linear in
parameters’’ models.

Given a dataset D¼ fðx1,y1Þ, . . . ,ðxT ,yT Þg, our goal is to optimise
parameters of a predictive model (i.e. MLP, LR or RBF) using MAP.
To simplify the notation, let X¼ fx,c,d,ag be the set of
parameters/hyperparameters of the model and noise. The poster-
ior density of the parameters given a dataset D is given by

pðXjDÞ ¼
pðDjXÞpðXÞ

pðDÞ
,

where pðDjXÞ is the dataset likelihood, pðXÞ is the prior, and p(D)
is evidence. Because the denominator does not affect the MAP
solution, we can ignore this term: pðXjDÞppðDjXÞpðXÞ. The
likelihood and the prior are given by

pðDjXÞ ¼ pðDjx,c,dÞ ¼
YT
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The weight prior pðxjaÞ is a Gaussian. It is helpful to generalise
the hyperparameter a to multiple hyperparameters a1, . . . ,aM

corresponding to groups of weightsW1, . . . ,WM . In theory, we can
create groupings of the weights in any way that we want.
However, weights in an MLP are normally divided into four
groups: first-layer weights, first-layer biases, second-layer
weights, and second-layer biases. In addition, the first-layer
weights can be also divided into several groups: weights fanning
out from a input variable are associated to a separate group. The
latter grouping approach relates to automatic relevance determi-
nation (ARD) [8] and is used in our experiments. Denote group
dimensions by W1,y,WM corresponding to the groups
W1, . . . ,WM . Thus the dimension of x is W¼

PM
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There are many possible choices for the densities pðaÞ and p(c,d),
but for simplicity we assume that they are uniform distributions.
Therefore, they will be ignored in the subsequent analysis. Hence
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3.1. Variational approximation

The Student-t distribution of each observation yt can be
considered as a mixture of an infinite number of zero-mean
Gaussians with inverse variance bt . Let b¼ fb1,b2, . . . ,bT g; then

pðDjXÞ ¼
Z 1

0
pðD,bjXÞdb¼

Z 1
0

pðDjb,XÞpðbjXÞdb, ð4Þ
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