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a b s t r a c t

In this paper, we study the effect of time delay on spiking synchronizations in Newman–Watts

networks of stochastic Hodgkin–Huxley (HH) neurons. It is found that as t is increased, the neurons

exhibit transitions from spiking synchronization (SS) to clustering anti-phase synchronization (APS)

and back to SS. Furthermore, the SS after the APS is enhanced with increasing time delay. For different

patch sizes (channel noise strength), network randomness (fraction of random connections), and

coupling strengths, the neurons exhibit similar synchronization transitions and the APS always occurs

at around t¼4, representing that the time delay-induced APS behavior is robust to the channel noise,

the number of random connections, and the coupling strength. A simple explanation for this

phenomenon was given in terms of the relation of spiking time-period and time delay values.

Since the information processing in the neurons are fulfilled by the spiking activity of the membrane

potential and the spiking synchronization plays a crucial role in the spiking activity, our results may

help us understand the effect of time delay as well as the interplay of channel noise and time delay on

the spiking activity and hence the information processing in stochastic neuronal systems.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the last two decades, synchronizations on neuronal net-
works have received much attention [1–21]. Synchronous activity
is considered to play important roles in information processing in
the brain [1–3], and they are also relevant to several neurological
diseases such as epilepsy and tremor in Parkinson’s disease [4,5].
Due to its importance, people have performed extensive studies
on the synchronizations in neuronal systems [6–21] and found
many phenomena, such as noise-induced synchronization in
modified Hodgkin–Huxley (MHH) neurons [9], chemical sy-
napse-induced synchronization in a ring neuronal network [10],
two coupled map-based neurons [11], a square lattice noisy
neuronal network [12], and scale-free networks of Morris–Lecar
neurons [13]; burst-enhanced synchronization in an array of
noisy coupled MHH neurons [14]; and synchronization in a large
ensemble of MHH neurons with gap junctions [15] and small-
world networks of neurons [16–20]. Recently, synchronization
transitions in neuronal systems have attracted growing attention.
People have found the transition from spatiotemporal chaos to
bursting synchronization (BS) with increasing coupling strength
in Hindmarsh–Rose neuron networks [21] and the transitions
between various synchronizations under different coupling

strengths and external currents in two electrically coupled MHH
neurons [22].

In neuronal systems, time delays are inherent because of both
finite propagation velocities in the conduction of signals along
neurites and the delays in synaptic transmission [23]. More
recently, firing dynamics of neuronal systems with time delays
have been intensively studied. People have found that time delays
can facilitate and improve neuronal synchronization [24–26],
destabilize synchronous states and induce near-regular wave
states [27], induce various spatiotemporal patterns [28] and
multiple stochastic resonances [29], and enhance the coherence of
spiral waves [30]. Very recently, time delay-induced synchroniza-
tion transitions on neuronal networks have attracted growing
interests. It is found that time delays can induce the synchroniza-
tion transitions in two coupled fast-spiking neurons [31] and
small-world neuronal networks of Rulkov map [32], and can
intermittently induce the synchronization transitions on scale-
free neuronal networks [33].

All these works have studied the synchronization transitions
on deterministic neuronal networks with time delays. However,
neurons are noisy elements. External noise arises from environ-
mental fluctuations and synapses, and internal noise comes from
stochasticity of dynamical processes in ion channels. The roles of
noise in the firing dynamics of neurons have been extensively
studied [34–45]. Obviously, it is of significance to study the
synchronization and transition in stochastic neurons with time
delays.
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In this paper, based on Newman–Watts networks of stochastic
HH neurons, we study the effect of time delay t on the spiking
synchronization and how the channel noise affects the time
delay-induced spiking behavior. It is found that, as t is increased,
the neurons exhibit transitions from SS to clustering APS and back
to SS. And the SS after the APS becomes enhanced with increasing
time delay t. For different network randomnesses, patch sizes
(channel noise), and coupling strengths, there are similar
synchronization transitions and the APS almost always occurs at
around time delay t¼4, which represents that the channel noise,
the number of random connections, and the coupling strength
nearly take no effect on the time delay-induced synchronization
transitions.

2. Model and equations

According to the HH neuron model, the dynamics of the
membrane potential V(t) can be described by

C
dV

dt
¼�gNam3hðV�VNaÞ�gKn4ðV�VKÞ�gLðV�VLÞþ IðtÞ, ð1aÞ

where the constants gNa¼120 mS/cm2, gK¼36 mS/cm2, and
gL¼0.3 mS/cm2 are the maximal conductance of sodium, potas-
sium, and leakage conductance, respectively. C¼1 mF/cm2 is the
membrane capacitance; VNa¼50 mV,VK¼�77 mV, and
VL¼�54.4 mV are the reversal potentials of sodium, potassium,
and leakage currents, respectively. We employ a periodic stimulus
I¼sin(0.3t), which is a subthreshold stimulus and does not trigger
action potentials if intrinsic channel noise is not taken into
account. Following Hodgkin and Huxley’s work, the gating
variables m, h, and n describe the mean ratios of the open gates
of the working sodium and potassium channels, and the factors n4

and m3h are the mean portions of the open potassium and sodium
ion channels within the membrane patch. To take into account the
channel noise, the stochastic gating variables m, h, and n obey the
following Langevin equations:

_m ¼ amðVÞð1�mÞ�bmðVÞmþxmðtÞ, ð1bÞ

_h ¼ ahðVÞð1�hÞ�bhðVÞhþxnðtÞ, ð1cÞ

_n ¼ anðVÞð1�nÞ�bnðVÞnþxnðtÞ, ð1dÞ

with voltage-dependent opening–closing transition rates given by

amðVÞ ¼
0:1ðVþ40Þ

1�exp½�ðVþ40Þ=10�
, ð2aÞ

bmðVÞ ¼ 4exp½�ðVþ65Þ=18�, ð2bÞ

ahðVÞ ¼ 0:07exp½�ðVþ65Þ=20�, ð2cÞ

bhðVÞ ¼
1

1þexp½�ðVþ35Þ=10�
, ð2dÞ

anðVÞ ¼
0:01ðVþ55Þ

1�exp½�ðVþ55Þ=10�
, ð2eÞ

bnðVÞ ¼ 0:125exp½�ðVþ65Þ=80�, ð2fÞ

where xi¼m,h,n(t) are Gaussian white noises with vanishing mean
and auto-correlation function /x(t)ix(t0)iS¼Did(t�t0). Di¼m,n,h

represent the effective channel noise strengths:

Dm ¼
2

NNa

ambm

amþbm

, ð3aÞ

Dh ¼
2

NNa

ahbh

ahþbh

, ð3bÞ

Dn ¼
2

NK

anbn

anþbn

: ð3cÞ

The overall numbers of involved potassium and sodium ion
channel are rescaled by NNa and NK, respectively. With the
assumption of homogeneous ion channels densities, rNa¼60
mm�2 and rK¼18 mm�2, the ion channel numbers are given by
NNa¼rNaS and NK¼rKS, where S is the membrane patch size.

Now the membrane potential dynamics of coupled HH
neurons on the complex networks can be described by the
following equations:

C
dVi

dt
¼�gNami

3hiðVi�VNaÞ�gKni
4ðVi�VKÞ�gLðVi�VLÞþ

X
j

eij Vjðt�tÞ�Vi

� �
,

ð4aÞ

dxi

dt
¼ axi
ðviÞð1�xiÞ�bxi

ðviÞxiþxxi
ðtÞ, ð4bÞ

where x¼m, h, n and 1r irN. Here N is the number of neurons
and t is the delay time in the unit of ms. Eqs. (1)–(4) constitute
the stochastic HH network model. In the coupling termP

jeij½Vjðt�tÞ�Vi�, Vi is the membrane potential of the ith neuron
at time t and Vj(t–t) is the membrane potential of the jth neuron
at earlier time t–t, where t is the time delay; 1r(i,j)rN, and the
summation is over all neurons; eij is a coupling constant between
the two neurons i and j, which is determined by the coupling
pattern of the system and is identical for any two neurons, i.e.,
eij¼e. If neurons i and j are connected, they have a constant
coupling strength e¼0.1; otherwise e¼0.

The neuronal network here is constructed as follows [17]. It
starts with a regular ring involving N¼60 identical HH neurons,
each neuron having two nearest neighbors. Links are then
randomly added between non-nearest vertices. In the limit case,
all neurons are coupled to each other and the network contains
N(N�1)/2 edges. Using M to denote the number of added
shortcuts, the fraction of shortcuts is given by p¼M/[N(N�1)/2],
which can be used to characterize the randomness of the network.
The sketches of the network with N¼10 when p¼0, 0.11 are
shown in Fig. 1. Note that for a given p there are a lot of
realizations of networks.

We introduce the standard deviation s to measure the spatial
synchronization. Here s is defined as

s¼ /sðtÞS½ �,

sðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞ

XN

i ¼ 1
ViðtÞ

2
�ðð1=NÞ

XN

i ¼ 1
ViðtÞÞ

2
h i

=ðN�1Þ

r
, ð5aÞ

where /US denotes the average over time and [U] the average over
50 different network realizations for each p. The value of s(t)

Fig. 1. (a) Regular ring network (p¼0) and (b) random network (pE0.11).
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