Neurocomputing 73 (2010) 3079-3088

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

Neurocomputing

Edited AdaBoost by weighted kNN

Yunlong Gao*, Feng Gao

Systems Engineering Institute, Xi'an Jiaotong University, Xi’an 710049, China

ARTICLE INFO

ABSTRACT

Article history:

Received 2 December 2009
Received in revised form

30 May 2010

Accepted 28 June 2010
Communicated by G.-B. Huang
Available online 25 August 2010

Keywords:
AdaBoost
Overfitting
kNN rules
Adaptability
Feature space

Any realistic model of learning from samples must address the issue of noisy data. AdaBoost is known
as an effective method for improving the performance of base classifiers both theoretically and
empirically. However, previous studies have shown that AdaBoost is prone to overfitting, especially in
noisy domains. On the other hand, the kNN rule is one of the oldest and simplest methods for pattern
classification. Nevertheless, it often yields competitive results, and in certain domains, when cleverly
combined with prior knowledge, it has significantly advanced the state-of-the-art. In this paper, an
edited AdaBoost by weighted KNN (EAdaBoost ) is designed where AdaBoost and kNN naturally
complement each other. First, AdaBoost is run on the training data to capitalize on some statistical
regularity in the data. Then, a weighted kNN algorithm is run on the feature space composed of
classifiers produced by AdaBoost to achieve competitive results. AdaBoost is then used to enhance the
classification accuracy and avoid overfitting by editing the data sets using the weighted kNN algorithm
for improving the quality of training data. Experiments performed on ten different UCI data sets show
that the new Boosting algorithm almost always achieves considerably better classification accuracy
than AdaBoost. Furthermore, experiments on data with artificially controlled noise indicate that the

new Boosting algorithm is robust to noise.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Despite the fact that learning in the presence of noxious noise
is generally quite difficult, the importance of being able to cope
with noisy data has led many researchers to study PAC learning in
the presence of malicious noise. AdaBoost, the most promising
PAC learning algorithm, has been proved theoretically and shown
empirically to be an effective method for improving the
classification accuracy [1-5]. It was believed initially, that
AdaBoost seldom overfits the training data. Even though the
training error reaches zero, the AdaBoost algorithm still has a
lower test error while training. However, recent studies have
suggested that AdaBoost might suffer from the problem of
overfitting [6-10], especially for noisy data sets.

The main advantage of AdaBoost over other boosting techni-
ques is that it is adaptive, i.e., it is able to take advantage of weak
hypotheses to maximize the minimum margin even if the training
error of the combination of hypotheses is zero [10-12]. There are
theoretical bounds on the generalization error of linear classifiers
[11,13], which decrease as the smallest margin of the samples
increases. Hence, the adaptive character of AdaBoost ensures that
it creates hypotheses with good generalization. The adaptiveness
of AdaBoost, however, is a double-edged sword, in the sense that

* Corresponding author. Tel.: +86 13289368676.
E-mail addresses: ylgao@sei.xjtu.edu.cn, gaoyl05@yahoo.com.cn (Y. Gao).

0925-2312/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2010.06.024

for noisy data sets, there could be certain data samples that are
difficult for the classifier to capture. The boosting algorithm then
tends to concentrate its resources on these suspect samples [14],
thereby distorting the optimal decision boundary. As a result, the
decision boundary will only be suitable for those difficult data
samples and not necessarily general enough for other data. The
margin maximized by AdaBoost is actually a ‘hard margin’, that is,
the smallest margin of the noisy data samples. Consequently, the
margin of the other data points may decrease significantly when
we maximize the ‘hard margin’, thereby forcing the generalized
error bound to increase.

Clearly, the property of concentrating AdaBoost resources on a few
suspect samples leads to overfitting. The most effective approach for
dealing with the overfitting problem in AdaBoost is to eliminate the
harmful effects of suspect samples. Several strategies have been
proposed to cope with overfitting. The key ideas of these methods can
be summarized into two groups: the first attempts to reduce the
effects of some hard-to-learn samples, while the other eliminates the
effects of hard-to-learn samples. However, to avoid overfitting, two
crucial problems should be noted. Which hard-to-learn samples can
be dealt with as suspect samples? And, how many hard-to-learn
samples can be dealt with as suspect samples?

The rest of the paper is arranged as follows. In Section 2, we
discuss related work on other boosting algorithms. In Section 3,
we present a weighted kNN algorithm for distinguishing samples
into two categories: suspect and non-suspect samples. Then, a full
description of EAdaBoost is presented in Section 4; some analyses


www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.06.024
mailto:ylgao@sei.xjtu.edu.cn
mailto:gaoyl05@yahoo.com.cn
dx.doi.org/10.1016/j.neucom.2010.06.024

3080 Y. Gao, F. Gao / Neurocomputing 73 (2010) 3079-3088

of our proposed algorithm are performed too in Section 4. Finally,
Section 5 describes our experiments, while Section 6 concludes
the paper.

2. Related work

In most works, estimating the ‘hardness’ of every training
example is based on observations of algorithm behavior. The
harmful effects of some hard-to-learn samples are reduced by a
modification weighting scheme or by introducing a different cost
function. As an example of this, Servedio [15] proposed a smooth
boosting algorithm using a modified weighting scheme. This
algorithm generates only smooth distributions that do not assign
too much weight to any single sample. Ratsch et al. [16] analyzed
the dynamic evolution of AdaBoost weights for estimating the
‘hardness’ of every training sample and regularized the exponen-
tial cost function with a penalty term, such as the weight decay
method. Based on the concept of robust statistics, Kanamori et al.
[17] proposed a transformation of loss functions that makes
boosting algorithms robust against extreme outliers.

All the works described above can be characterized as reducing
the harmful effects of hard-to-learn samples to avoid overfitting,
and implicitly solve the problems of which and how many
samples can be dealt with as suspect samples by weight
shrinking. Although these weight shrinking methods seem to be
very promising, researchers have not reported any significant
difference between AdaBoost and the methods of weight shrink-
ing in experiments on noisy data. For example, Domingo and
Watanabe [18] proposed a modification of AdaBoost in which the
weights of the samples are kept bounded by its initial value.
Nevertheless, the authors have reported no significant difference
between AdaBoost and this modification in experiments on noisy
data. Vezhnevets and Barinova [19] showed that, despite
regularization, MadaBoost is also prone to overfitting as the
algorithm approaches termination.

A large body of research demonstrates that removing hard
samples is worthwhile [20-22]. The main goal of these
approaches is to enhance the classification accuracy by eliminat-
ing the harmful effects of suspect samples. As the algorithm
approaches its predetermined end, it is less and less likely that
samples with large negative margins will eventually be correctly
labeled. Thus, it is more beneficial for the algorithms to ‘give up’
on these samples and concentrate their efforts on those samples
with small negative margins. Examples of such algorithms are
BrownBoost and regularized boosting algorithms, which eliminate
the harmful effects of suspect samples by ‘giving up’ on these
samples. These methods estimate the degree of ‘hardness’ of the
training sample based on the influence of the sample on the
combined hypotheses. However, they determine how many
samples can be dealt with as suspect samples based on certain
important parameters fixed in advance. For example, to use
BrownBoost one needs to pre-specify an upper bound (1/2)—7y on
the error of a weak learner and a ‘target’ error ¢ > 0 should be
given a priori [7]. Regularization methods [23] need to fix a
regularization constant in advance.

The problem of handling mislabeled, atypical and noisy
training samples has been the focus of much attention in both
pattern recognition and machine learning domains. The k-nearest
neighbors (kKNN) rule is one of the oldest, simplest and non-
parametric methods for improving the quality of the training data
[24]. However, the performance of kNN depends crucially on the
distance metric used to identify nearest neighbors. In fact, as
shown by many researchers [25-28], kNN classification can be
significantly improved if the input features can capitalize on any
statistical regularities in the data. Even a simple (global) linear

transformation of input features has been shown to yield much
better KNN classifiers.

Since the feature space composed of the obtained classifier in
AdaBoost capitalizes on some statistical regularities in the data, in
this paper, we first give a weighted kNN algorithm which takes full
advantage of the feature space. Then, we propose a new boosting
method called Edited AdaBoost by weighted kNN (EAdaBoost). In
each iteration of the new method, the weighted kNN algorithm is
used to distinguish samples into two categories: suspect and non-
suspect samples. A suspicious sample is a sample, for which the
optimal prediction for a given loss, and the family of classifiers,
differs from its current label, or those observations regarding rare
samples, which are often associated with variable asymmetry and
are an important cause for leverage points [29]. Samples viewed as
being suspicious should have their influence eliminated in the next
iteration. In each cycle of the new algorithm, the quality of the
training data is improved by ‘giving up’ on some suspect samples,
thus ensuring that the new algorithm enhances classification
accuracy and avoids overfitting. In contrast to the works described
above which try to cope with overfitting in AdaBoost, the new
method explicitly and strictly defines which and how many
samples can be dealt with as suspect samples in each cycle.
Moreover, none of the important additional parameters need to be
given in advance in the new algorithm.

3. Weighted kNN

One of the most widely studied non-parametric classification
approaches corresponds to the kNN rule [24,30]. The goal of the
kNN algorithm is to form a generalization from a set of labeled
training samples such that the classification accuracy for new
samples is maximized. The maximum accuracy achievable
depends on the quality of the input data and on the appropriate-
ness of the chosen k nearest neighbors. In this section, we give a
brief description of the kNN algorithm. After describing the
statistical basis of the kNN method, we present a new weighted
kNN algorithm, which focuses mainly on how to choose the k
nearest neighbors.

3.1. KNN classification rule

For convenience, we fix some terminology. Let
S=&;,¥),i=1,2,..,N be the training set, where x; is a
d—dimensional vector of attributes and y;e{+1,—1} is the
associated observed class label (for simplicity, we consider a
binary classification task). To justify generalization, we make the
assumption that the training data are iid samples of random
variables (X, Y) having some unknown distribution.

Given N previously labeled samples as the training set S, the
kNN algorithm constructs a local subregion R(x) = RY of the input
space, centered at the estimation point x. The predicting region
R(x) contains the k closest training points to x:

R(x) = {X|D(x,%) < d,} 1)

where d, is the kth order statistic of {D(x,fc)}']V , and D(x,%) is a
distance metric. Let k[y] denote the number of samples in region
R(x), which are labeled y. The kNN algorithm is statistically
inspired in the estimation of the posterior probability P(y|x) of the
observation point x:

pO[xPY) _ k]

Pyl =2 = @

For a given observation x, the decision g(x) is taken by
evaluating the values of k[y], and selecting the class that has the



Download English Version:

https://daneshyari.com/en/article/412710

Download Persian Version:

https://daneshyari.com/article/412710

Daneshyari.com


https://daneshyari.com/en/article/412710
https://daneshyari.com/article/412710
https://daneshyari.com

