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a b s t r a c t

We study the propagation of pulse sequences in a chain of neurons with sigmoidal input–output

relations. The propagating speeds of pulse fronts depend on the widths of the preceding pulses and

adjacent pulse fronts interact attractively. Sequences of pulse widths are then modulated through

transmission. Equations for changes in pulse width sequences are derived with a kinematical model of

propagating pulse fronts. The transmission of pulse width sequences in the chain is expressed as a

linear system with additive noise. The gain of the system function increases exponentially with the

number of neurons in a high-frequency region. The power spectrum of variations in pulse widths due to

spatiotemporal noise also increases in the same manner. Further, the interaction between pulse fronts

keeps the coherence and mutual information of initial and transmitted pulse sequences. Results of an

experiment on an analog circuit confirm these properties.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Coupled nonlinear dynamical systems have received much
attention in various fields, e.g. in the dynamics of neuronal
networks, immune networks and ecological systems
[11,21,38,47]. A ring neural network, which is a ring of
unidirectionally coupled neurons with sigmoidal input–output
relations, is an example of a typical coupled system. It was
proposed as a simple model of neural networks to generate
spontaneous oscillations [2]. It has been studied in the field of
recurrent neural networks [3,24] and mathematically as an
example of a cyclic feedback system [17], and its various
properties have been derived. When the strength of coupling is
larger than a critical value, the network is globally bistable if the
number of inhibitory (negative) couplings is even; in contrast, it
has a stable periodic solution and oscillates if the number of
inhibitory couplings is odd. In the former bistable networks, it has
been shown that delays cause various spatiotemporal patterns
[22,56] and long-lasting transient oscillations [4,5,46]. The latter
oscillations are qualitatively the same as those obtained with a
ring oscillator, which is a ring of inverters and buffers, and this
type of network is widely used as a variable-frequency oscillator
in digital circuits [23].

It has recently been shown that the duration of transient
oscillations in bistable ring neural networks increases exponen-
tially with the number of neurons, even in the absence of delays

[29,30,37]. Such exponential dependence of transient time on
system size is of wide interest since systems never reach their
asymptotically stable states within a practical period of time, and
thus their transient states can play a more important role than the
stable states. This phenomenon has been found in one-dimen-
sional reaction-diffusion equation models describing phase
transition, in which the motion of unstable fronts or kink patterns
is extremely slow and the duration of these patterns increases
exponentially with domain lengths [9,13,28,36]. Further, it has
been shown that such extremely slow motion of various patterns
exists in several high-dimensional reaction-diffusion systems
related to phase separation and coarsening in binary alloys, the
exit problem for diffusion in a potential well, and spike patterns in
an activator–inhibitor model for morphogenesis; this slow motion
is referred to as metastable dynamics ([54,55], and references
therein). It has also been found in more complicated systems and
patterns, e.g. transient chaos in coupled map lattices [34] and a
reaction-diffusion model [53], and transient patterns in some
neural network models [6,19,51,58].

The transient oscillations in ring neural networks are traveling
waves rotating in the networks, and the mechanism of exponen-
tial increases in their duration has been described with a
kinematical model [30]. There is an interaction between the
multiple traveling fronts in the network, the strength of which
decreases exponentially with their distances, i.e. the number of
neurons between them. The interaction is attractive, and it
increases the speeds of the fronts as distances to the forward
fronts decrease. As a result, adjacent fronts with small distances
collide one by one, and the network finally reaches a bistable
steady state so that the oscillation ceases. However, the oscillation
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lasts an exponentially long time due to the exponentially small
interaction. It was also shown that spatiotemporal noise of
intermediate strength increases the duration of transient oscilla-
tions due to the nonlinearity in the interaction, while spatial
randomness reduces the increasing rate from an exponential to a
polynomial order of the number of neurons [32]. The interaction
between traveling waves and spatiotemporal noise has also been
shown to cause a correlation in a series of periods in oscillations
in networks of a ring oscillator type [31].

It is known that similar kinematics exist in the propagation of
a spike train in a nerve fiber; this phenomenon is referred to as
the dispersion relation [43,49]. The speeds of spikes decrease in
the relative refractory period after the passage of the previous
spikes, during which time the nerve membrane is in the process of
recovering to the resting state and its excitability is reduced. In
contrast to a ring neural network, the interaction between nerve
spikes is repulsive and periodic nerve spike trains are stable. It has
been shown that the interspike intervals of a spike train smooth
during propagation and that the nerve fibers work as a low-pass
filter [25,26].

Concerning signal transmission as spike propagation in a nerve
fiber, an open chain of unidirectionally coupled neurons with the
same sigmoidal input–output relations as a ring neural network
can work as a transmission line of binary signals. Computer
simulation can show that stimuli given at one end of the chain are
magnified to one of the bistable states of the neurons, depending
on their signs. A pulse sequence is then generated, being
propagated in the chain and transmitted to the other end. The
propagation of waves in such synaptically coupled neurons has
been observed in activity patterns in neural tissue. It has then
been studied with ion channel models in which synaptic
couplings are involved instead of diffusive couplings [12,20,52].
The existence and stability of these traveling waves and their
properties have also been derived by integro-differential equa-
tions with nonlocal spatiotemporal interaction for firing rate
models [1,10,15] and integrate-and-fire models [8,14]. Further,
arrays of coupled bistable elements have also been studied from
the perspective of stochastic resonance in spatially extended
systems [16,40,42,50]. It has then been shown that stochastic
resonance in the form of the noise-sustained propagation of
signals and waves occurs in diffusively coupled diode resonators
[41], one-way coupled bistable systems [57], two-way coupled
bistable oscillators [36] and a cascade of two-state threshold
elements [7]. In a chain of neurons, it is expected that the
interaction between pulse fronts as well as spatiotemporal noise
causes characteristic changes in a pulse sequence during
propagation. These changes result in the modulation of signals
encoded in a pulse sequence, similar to that occurring in a nerve
fiber.

In this study, we considered signal transmission in an open
chain of unidirectionally coupled neurons in the presence of
spatiotemporal noise. We derived a kinematical model of the
propagation of pulse fronts (edges) occurring in the same way as
in a ring neural network. Adjacent pulse fronts interact attrac-
tively through the pulse widths in addition to fluctuations due to
noise. Propagating pulse sequences are unstable due to the
attractive interaction, and pulses tend to collide and disappear.
However, pulses can propagate without disappearance over an
exponentially large number of neurons since the interaction
decreases exponentially with the pulse width. We then
formulated the transmission of a pulse width sequence as a
linear system with additive noise. Both the gain in the transfer
function of the system and the power spectrum of variations due
to noise increase exponentially with the number of neurons in
high-frequency regions. Further, the interaction between pulse
fronts prevents the coherence and mutual information of input

and output pulse width sequences from decreasing through
transmission due to noise.

The rest of the paper is organized as follows. In Section 2, a
model of a chain of neurons is explained and its behavior is shown
with a computer simulation. In Section 3, a kinematical model of
the propagation of pulse fronts is derived, and changes in pulse
widths during propagation are expressed with this model.
Properties of changes in a pulse sequence are shown in
Section 4. The transfer function of transmission, the power
spectrum of variations due to noise, and the coherence and
mutual information of initial and transmitted pulse sequences are
derived. It is also qualitatively explained that the mean pulse
width increases logarithmically with the number of neurons due
to the disappearance of pulses, and this explanation is confirmed
by computer simulation. Further, the method and results of an
experiment with an analog circuit of the chain is shown in Section
5. Finally, our conclusion and discussion are given in Section 6.

2. Chain of neurons

We consider a chain of unidirectionally coupled neurons with
sigmoidal input–output relations and a signaling problem on it.
A model equation is

dx1ðtÞ=dt¼�x1ðtÞþsðtÞ

dxnðtÞ=dt¼�xnðtÞþ f ðxn�1ðtÞÞþsxwnðtÞ ð2rnrNÞ

f ðxÞ ¼ tanhðgxÞð9g941Þ

E wnðtÞ
� �

¼ 0, E wnðtÞwnuðtuÞ
� �

¼ dnnu � dðt�tuÞ ð1Þ

where xn is the state of the nth neuron, N the number of neurons,
f(x) the output function of neurons of sigmoidal form and g the
output gain. Neurons are unidirectionally coupled in a chain and
the output of each neuron is transmitted to the next neuron.
Gaussian white noise wn(t) with the strength sx is also added to
each neuron independently. This model of a chain of neurons is
regarded as a noisy signal transmission line. When a stimulus s(t)
is added to the first neuron, it is transmitted from neurons to
neurons. When a small constant stimulus s(t)¼s0(9s0951) is
added, its absolute value is amplified since the absolute value of
the output gain is larger than unity (9g941). It approaches one of
the stable steady states 7xp(xp¼ f(xp)40) through transmission
depending on the sign of s0 and g. The absolute value of the
steady states increases to unity as the gain increases (9xp9-1 for
9g9-N). In the following we consider excitatory couplings
(positive gains), i.e. g41. It should be noted that obtained results
are applicable to chains of neurons with negative gains (go�1).
In fact, chains of neurons with negative gains are transformed to
those with positive gains by changing the signs of the states of
alternate neurons, e.g. x2m-�x2m.

Let a stimulus s(t) be the following periodic binary rectangular
pulses with variations in pulse widths.

sðtÞ ¼�xpo0 ðt2k�1ð0Þotot2kð0ÞÞ ðkZ0, t�1ð0Þ ¼ �1Þ

¼ xp40 ðt2kð0Þotot2kþ1ð0ÞÞ

Tjð0Þ ¼ tjð0Þ�tj�1ð0Þ ¼mðTÞþsT wj ðjZ1, sT 5mðTÞÞ

Efwjg ¼ 0, Efwjwjug ¼ dj,ju ð2Þ

where we assume that the stimulus is fixed to s¼�xp for tot0(0),
and the states of all neurons in the chain are also set to be �xp for
tot0(0), which is the negative steady state (resting state) of the
chain. The first change in the stimulus to s¼xp occurs at t¼t0(0)
and then the stimulus changes its sign at tj alternately. The
temporal width of the jth pulse in the stimulus, i.e. an interval
tj(0)�tj�1(0) between the j�1st and jth changes in the sign of the
stimulus is denoted by Tj(0). The mean of the pulse widths is m(T)
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