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Bagging is a popular ensemble algorithm based on the idea of data resampling. In this paper, aiming at
increasing the incurred levels of ensemble diversity, we present an evolutionary approach for optimally
designing Bagging models composed of heterogeneous components. To assess its potentials, experiments
with well-known learning algorithms and classification datasets are discussed whereby the accuracy,
generalization and diversity levels achieved with heterogeneous Bagging are matched against those
delivered by standard Bagging with homogeneous components.
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1. Introduction

Over the last decades, the strategy of combining multiple
classifiers into ensembles has received increasing interest due to
its potential in bringing about significant improvements in terms
of training accuracy and learning generalization [1,2]. As the key
for the success of any ensemble lies in how its components
disagree on their predictions [3], several approaches for designing
diverse components have been conceived, among which those
using different subsets of training data jointly with a single
learning method [4,5] and those adopting different learning
methods associated with different predictors [6,7].

A well-known representative of the first group is Bagging,
which is based on the idea of data resampling [4,5,8,9]. Diversity
is promoted in Bagging by using bootstrapped replicas of the
training dataset, each replica being generated by randomly
drawing, with replacement, a subset of the training data.
Typically, each new dataset will have the same number of
instances of the original dataset; however, since some instances
will appear repeatedly while others will not show up, the effective
size will be lower and the datasets will overlap significantly. Each
derived dataset is used to train a classifier, and then, for any test
instance, the outputs of the individual classifiers are aggregated
via the simple majority vote (MV) rule. Usually, unstable
classifiers are adopted as base models, since this type of classifier
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can generate sufficiently different decision boundaries even for
small perturbations in the training parameters [2,4].

In this paper, aiming at further increasing the diversity levels
of the ensemble models produced by Bagging, we present an
evolutionary approach for optimally designing Bagging models
composed of heterogeneous components. Even though the idea of
heterogeneous ensembles has been recently advocated [6,7], so
far there is no deep investigation on the benefits of adopting
different learning algorithms in the context of Bagging. In fact,
this idea seems very reasonable since different classes of learning
algorithms are usually associated with different search/represen-
tation biases (and thus hypothesis spaces) [10], thereby foment-
ing ensemble diversity. Since the automatic configuration of the
best heterogeneous Bagging (HB) model for a given classification
problem turns out to be a combinatorial optimization problem in
itself, a customized genetic algorithm (GA) [11] has been adopted
for this purpose. To validate the novel approach, experiments
with well-known learning algorithms and classification datasets
are reported here whereby the accuracy, generalization and
diversity levels incurred with HB are matched against those
delivered by standard Bagging with homogeneous components.

In the sequel, we describe how HB models are evolved and
then discuss the results achieved in the experiments. The last
section concludes the paper, bringing remarks on future work.

2. Evolving heterogeneous Bagging models

In a nutshell, HB allows that different learning algorithms be
recruited to induce the ensemble components over the resampled
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data produced via Bagging. For this purpose, we have resorted to
M=10 state-of-the-art learning algorithms representing five
distinct classes of classifier inducers [10]: (i) simple Naive Bayes
(NB), founded on Bayesian statistics; (ii) RBF neural networks
(NN) and support vector machines (SVM) trained with SMO
algorithm, both based on nonlinear function representations; (iii)
J48, decision stump (DS), and REP tree (RT), working with decision
trees; (iv) IBK, an instance learning algorithm; and v) OneR, PART
and decision table (DT), which generate hypothesis in rule format.
This repertory covers both simple and complex inducers; likewise,
it includes unstable (NN, J48, PART) and stable (IBk, NB, SVM)
classifiers. By this means, it is possible to assess whether the
fusion of simple with complex, unstable with stable classifiers via
HB could bring about gains in accuracy and generalization.

One should note that the application of distinct HB structures
may entail very different results in terms of ensemble perfor-
mance. As the size of the space of possible heterogeneous
structures is exponential in nature, a customized GA [11] has
been deployed for optimally designing HB templates. Each
individual of the GA population P encodes a whole HB structure
and is codified as a K-size string of integer values, where K is the
maximum number of components allowed. For filling in the k-th
position (gene), M+1 values (alleles) are available, one for each
type of inducer in the above-mentioned repertory and another
indicating the possibility of component pruning. Usually, the
pruning of ensemble components happens as a second stage in
ensemble creation (after the generation of components) in order
to reduce redundancy and complexity of the resulting ensemble
model [12]. In our case, component generation and pruning occur
simultaneously, allowing HB to tune the ensemble size in
agreement with the problem’s demands.

To evaluate the quality of HB templates, a convex linear
combination of two terms has been adopted as fitness function:
one related to accuracy and the other to parsimony. While the
first refers to the cross-validation error delivered in training
(see next section), the latter measures the complexity of an HB
model. By this means, the lower the cross-validation error and the
number of components of an ensemble model are, the higher will
be the associated fitness value. Moreover, Roulette Wheel [11] is
used both for selecting individuals to reproduce (among parents)
and to survive to the next generation (among parents and

Table 1

offspring), even though elitism [11] is also adopted in the
replacement phase. Individuals are recombined through a
single-point crossover and the resulting offspring undergo mod-
ifications via random-resetting mutation [11]. The stop criterion
adopted has been to go through a given number of generations of
evolution.

3. Empirical assessment

To assess the potentials of HB, a prototype was developed
under Weka [10] and extensive experiments were conducted over
20 UCI benchmark datasets [13]. These datasets (two of which
contain noisy data, viz. monks-3 and waveform) are indicated in
Tables 1 and 2, and their description in terms of type/number of
attributes and number of instances/classes can be found else-
where [5,9]. To serve as yardstick against which we could match
the performance of HB models, we have also recorded results
delivered by standard, homogeneous Bagging induced with each
of the M types of learning algorithms described earlier.

Aiming at producing statistically significant results, for each
dataset, 10 pairs of stratified training/test (66.6%/33.4%) partitions
were randomly generated by using different random seeds.
Through a 10-fold stratified cross-validation [10] over the training
partitions, both homogeneous and heterogeneous Bagging models
were induced and assessed. The resulting error rates served as
fitness scores to guide the GA engine. Conversely, test data were
used for assessing the levels of generalization achieved by the
resulting ensemble models trained ultimately over the whole
training partition.

For the experiments, the GA control parameters were set as
follows (after manual calibration): 20 as population size (1,); 80%
and 10% as crossover and mutation rates, respectively; and 20 as
maximum number of generations (n,). It is worth mentioning that
the performance results reported for each dataset relate to the
best weight combinations achieved for the two terms employed
in the GA fitness function. Besides, we have made extensive use of
the validation testbench and code implementations (with default
control parameter values) available in Weka [10] for the M
learning algorithms adopted in HB (see Section 2). Moreover,
although we have experimented with different values for the

Performance comparison between homogeneous and heterogeneous Bagging models—accuracy.

Dataset Homogeneous Bagging Heterogeneous Bagging

Best (type) Average Best Size Comp. types
anneal 0.0252 + 0.0082 (DT) 0.1228 + 0.0481 0.0251 + 0.0059 9.1+1.1 DT,NB,SVM
breast-cancer 0.2673 + 0.0446 (DS) 0.2876 + 0.0169 0.2224 + 0.0333 9.4+0.7 NB,NN,OneR
bupa 0.3280 + 0.0438 (PART) 0.4009 + 0.0411 0.3102 + 0.0302 8.9+0.3 RT,DS,PART
colic 0.1548 + 0.0231 (PART) 0.1916 + 0.0236 0.1206 + 0.0284 9.54+0.5 J48 RT,DT
credit-a 0.1323 + 0.0255 (PART) 0.1533 + 0.0281 0.1128 + 0.0156 8.9+0.3 OneR,DT,NB
diabetes 0.2546 + 0.0256 (NB) 0.2744 + 0.0204 0.2237 + 0.0270 8.9+0.3 NB,SVM,PART
glass 0.3699 + 0.0483 (J48) 0.4349 + 0.0630 0.3000 + 0.0326 8.9+0.3 NN,J48,IBk
haberman 0.2600 + 0.0110 (NB) 0.2835 + 0.0225 0.2333 + 0.0197 9.0+ 0.0 DS,0neR,NN
heart-c 0.1606 + 0.0317 (NN) 0.2146 + 0.0352 0.1413 + 0.0231 8.9+0.3 NB,NN,RT
hepatitis 0.1358 + 0.0406 (NB) 0.1943 + 0.0270 0.1132 + 0.0487 8.7+0.5 NB,PART,DS
ionosphere 0.1067 + 0.0207 (NN) 0.1417 + 0.0330 0.0650 + 0.0146 9.0+ 0.0 NB,NN,OneR
iris 0.0451 +0.0132 (NN) 0.0714 + 0.0256 0.0294 + 0.0139 89+1.2 NN,IBk,RT
monks-3 0.0653 + 0.0534 (SVM) 0.1398 + 0.5660 0.0414 + 0.0346 8.7+0.7 PART,SVM,RT
segment 0.0525 + 0.0087 (PART) 0.1492 +0.1423 0.0380 + 0.0034 9.0+ 0.0 DT,PART,J48
sick 0.0175 + 0.0040 (J48) 0.0390 + 0.0214 0.0157 + 0.0031 9.4+0.7 J48,PART,RT
sonar 0.2141 + 0.0643 (IBk) 0.2968 + 0.0392 0.1746 + 0.0416 8.8+0.4 IBK,NN,SVM
vehicle 0.2806 + 0.0189 (PART) 0.3783 +£0.1154 0.2497 + 0.0170 9.1+0.9 PART,RT,SVM
vote 0.0466 + 0.0137 (RT) 0.0586 + 0.0169 0.0385 + 0.0115 8.9+0.3 RT,PART,IBk
waveform 0.1443 + 0.0057 (SVM) 0.2349 + 0.1041 0.1444 + 0.0072 9.1+1.0 SVM,NN,PART
Z00 0.0857 + 0.0269 (IBk) 0.2717 +£0.1933 0.0886 + 0.0250 8.9+0.3 SVM,IBk,NN
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