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a b s t r a c t

In this paper, we show how support vector machine (SVM) can be employed as a powerful tool for k-

nearest neighbor (kNN) classifier. A novel multi-class dimensionality reduction approach, discriminant

analysis via support vectors (SVDA), is proposed. First, the SVM is employed to compute an optimal

direction to discriminant each two classes. Then, the criteria of class separability is constructed. At last,

the projection matrix is computed. The kernel mapping idea is used to derive the non-linear version,

kernel discriminant via support vectors (SVKD). In SVDA, only support vectors are involved to compute

the transformation matrix. Thus, the computational complexity can be greatly reduced for kernel based

feature extraction. Experiments carried out on several standard databases show a clear improvement on

LDA-based recognition.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The k-nearest neighbors (kNN) [1] rule is one of the oldest and
simplest methods for pattern classification. Feature extraction
(dimensionality reduction) are often employed in helping kNN
classifier to reduce computational complexity and improve
classification accuracy.

The generic problem of linear dimensionality reduction is the
following. Given a dataset X ¼ ðx1,x2, . . . ,xNÞARn�N , find a trans-
formation matrix A¼ ða1, . . . ,akÞARn�k that maps these N points
to a set of points Z ¼ ðz1,z2, . . . ,zNÞARk�N , such that zi represents
xi, where zi¼ATxi.

1.1. PCA and LDA

Principal component analysis (PCA) [2], also known as
Karhunen–Loeve expansion, is a classical feature extraction and
data representation technique widely used in the areas of pattern
recognition and computer vision. Due to its simplicity and
effectiveness, many variants of PCA were developed [3–5].

Linear discriminant analysis (LDA) [6], or called Fisher’s linear
discriminant (FLD), for feature extraction has been applied to a
wide variety of problems such as face recognition. It often produces
much better results than PCA. However, in practice, the LDA has
three major problems: (1) It suffers from the small sample size
(SSS) problem when dimensionality is greater than the sample size.

(2) It creates subspaces that favor well separated classes over those
that are not. (3) LDA assumes the data obey normal distribution.
And it simply uses ma�mc to discriminate two classes oa and oc . It
fails to obtain the optimal direction to separate two classes.

Many algorithms tried to alleviate one or two of the problems
in LDA. The regularized discriminant analysis (RDA) [7] added a
multiple of identify matrix to the within-class matrix with regard
to the small sample size problem. Another well-known approach
is the Fisherface [8], in which LDA is employed after the PCA is
used. Another technique, newLDA [9], first transforms the data
into the null space of Sw. It then applies PCA to maximize the
between-class scatter matrix in the transformed space.

1.2. Local learning

More recent years, many manifold (graph) based methods are
implemented to preserve the local information and obtain a new
subspace [10,11]. Some popular ones include: discriminant locally
linear embedding (DLLE) [12], geometric mean for subspace
selection (MGMD) [13], harmonic mean for subspace selection
(MHMD) [14], discriminative locality alignment [15], transductive
component analysis (TCA) [16], locality preserving projection
(LPP) [17], marginal Fisher analysis (MFA) [18] and locality
sensitive discriminant analysis (LSDA) [19], etc. To learn more
about local learning methods, one can refer to [11].

1.3. Margin based discriminant

Large margin nearest neighbor (LMNN) [20] learns a Mahana-
lobis distance metric for kNN classification by semidefinite
programming. Large margin component analysis (LMCA) [21]
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solves for a low-dimensional embedding of the data such that
Euclidean distance in this space minimizes the large margin
metric objective described in [20]. Yuan and Pang [22] iteratively
selects a series of simple but effective 1D subspaces, and then
combines the corresponding 1D projections by Adaboost.

Support vector machine (SVM) [23] is based on the statistical
learning theory of Vapnik and quadratic programming learning
theory. The superior classification performance of SVM has been
justified in numerous experiments, particularly in high dimension-
ality and small sample size (SSS) problems. Bi et al. [24] described a
methodology for performing variable ranking and selection using
support vector machines (SVMs). Margin maximizing discriminant
analysis (MMDA) [25] attempted to preserve as much discriminant
information as possible by projecting the dataset onto margin
maximizing directions (separating hyperplane normals) found by an
SVM algorithm. The corresponding normal vectors of the hyperplanes
are taken as new features and the data are projected onto them. The
first MMDA feature is obtained by simply using the standard SVM.
Then, after obtaining orthogonal MMDA features, the second feature
is found by optimizing the SVM in the remaining feature subspace. It
is intrinsically a two-class approach.

In this paper, we developed a supervised dimensionality
reduction approach for multiple-class problems, by employing
SVM. To make a contrast with LDA, we call this approach
discriminant analysis via support vectors (SVDA). Both linear and
nonlinear models, discriminant analysis via support vectors (SVDA)
and kernel discriminant via support vectors (SVKD), are described.

The rest of this paper is organized as follows. In Section 2, the
LDA and SVM are reviewed briefly. In Section 3, the proposed
SVDA algorithm is introduced. We describe how to perform SVDA
in reproducing kernel Hilbert space (RKHS) which gives rise to
kernel SVDA in Section 4. The experimental results are presented
in Section 5. Finally, a conclusion is given in Section 6.

Notation conventions used in this paper:

i,N counter and number of training samples;
n dimension of training samples;
X training samples with size of n�N;
j Rn-F ;
K Kðxi,xjÞ ¼/jðxiÞ,jðxjÞS;
K kernel matrix, Ki,j ¼Kðxi,xjÞ;
a,M counter and number of classes;
ma mean vector of class oa;
Na number of samples in class oa;
Ia collection of sample indexes in class oa;

2. LDA and SVM

2.1. LDA

In LDA, within-class and between-class scatter matrices are
used to formulate the criteria of class separability. A within-class
scatter matrix characterizes the scatter of samples around their
respective class mean vectors, and it is expressed by

Sw ¼
XM

a ¼ 1

X
iA Ia

ðxi�maÞðxi�maÞ
T : ð1Þ

A between-class scatter matrix characterizes the scatter of the
class means around the mixture mean m. It is expressed by

Sb ¼
XM
a ¼ 1

Naðma�mÞðma�mÞ
T : ð2Þ

Linear discriminant analysis (LDA) seeks directions that are
efficient for discrimination. Fisher criterion is used to find the

projection matrix and the objective function of LDA is

aopt ¼ arg max
a

aT Sba

aT Swa
: ð3Þ

One can solve the generalized eigenvalue problem:

Sba¼ lSwa: ð4Þ

2.1.1. RDA

In practice, the small sample size (SSS) problem is often
encountered, where Sw is singular. Therefore, the maximization
problem can be difficult to solve. To address this issue, the term eI
is added, where e is a small positive number and I is the identity
matrix of proper size. This results in maximizing

aopt ¼ arg max
a

aT Sba

aT ðSwþeIÞa
: ð5Þ

This is a special case of Friedman regularized discriminant
analysis with regard to the small sample size problem [7].

2.2. SVM

Generally, an SVM [23] solves a binary (two-class) classifica-
tion problem, and multi-class classification is accomplished
by combining multiple binary SVMs. An M-class problem can be
decomposed into M binary problems with each separating one
class from the others, or into M(M�1)/2 binary problems with
each discriminating between a pair of classes. On a pattern x, the
discriminant function of a binary SVM is given by

f ðxÞ ¼
Xl

i ¼ 1

yiaiKðx,xiÞþb, ð6Þ

where l is the number of learning patterns, yi is the target value of
learning pattern xi (+1 for the first class and �1 for the second
class), b is a bias, and Kðx,xiÞ is a kernel function which implicitly
defines an expanded feature space:

Kðx,xiÞ ¼jðxÞ �jðxiÞ, ð7Þ

where jðxÞ is the feature vector in the expanded feature space and
may have infinite dimensionality. Several popular kernels are:
linear kernel K(xi, xj)¼xi

Txj; polynomial kernel K(xi, xj)¼(1+xi
T xj)

p

and RBF kernel Kðxi,xjÞ ¼ expð�Jxi�xjJ
2=s2Þ.

The discriminant function of Eq. (6) can be viewed as a
generalized linear discriminant function with weight vector

w¼
Xl

i ¼ 1

yiaijðxiÞ: ð8Þ

The coefficients ai ði¼ 1,2, . . . ,lÞ are determined according to the
learning patterns by solving the following optimization problem:

Minimize tðwÞ ¼ 1

2
JwJ2

þC
Xl

i ¼ 1

zi

subject to yif ðxiÞZ1�zi and ziZ0, i¼1,2,y,l.
This is a quadratic programming problem and can be

converted into the following dual problem:

Minimize Q ðaÞ ¼
Xl

i ¼ 1

ai�
1

2

Xl

i ¼ 1

aiajyiyjKðxi,xjÞ

subject to 0rairC, i¼ 1,2, . . . ,l,

and
Xl

i ¼ 1

aiyi ¼ 0, ð9Þ

where C (default C¼100) is a parameter to control the tolerance of
classification errors in learning.
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