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a b s t r a c t

Dimensionality reduction has proved to be a beneficial tool in learning problems. Two of the main

advantages provided by dimensionality reduction are interpretation and generalization. Typically,

dimensionality reduction is addressed in two separate ways: variable selection and feature extraction.

However, in the recent years there has been a growing interest in developing combined schemes such

as feature extraction with built-in feature selection. In this paper, we look at dimensionality reduction

as a rank-deficient problem that embraces variable selection and feature extraction, simultaneously.

From our analysis, we derive a weighting algorithm that is able to select and linearly transform

variables by fixing the dimensionality of the space where a relevance criterion is evaluated. This step

enforces sparseness on the resulting weights. Our main goal is dimensionality reduction for

classification problems. Namely, we introduce modified versions of principal component analysis

(PCA) by expectation maximization (EM) and linear regularized discriminant analysis (RDA). Finally, we

propose a simple extension of WRDA that deals with functional features. In this case, observations are

described by a set of functions defined over the same domain. Methods were put to test on artificial and

real data sets showing high levels of generalization even for small sized training samples.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Identifying relevant features has been discussed in the past by
several authors such as [1,2], It has been shown theoretically and
experimentally that dimensionality reduction can improve the
generalization ability of a learning algorithm. One of the most
common issues that encourages the use of dimensionality reduction
is the problem of over-fitting to the training data when the number
of observations (size of the sample) is small compared to the
number of variables that represent each instance. A common
paradigm in pattern recognition systems is to take advantage of
prior knowledge that can be used to tailor features to effectively
describe objects. However, very often this prior knowledge is not
available or cannot be easily incorporated; in such cases it is
desirable to employ features that are rather generic. The key issue is
how to use these sets of features, wisely [3]. Therefore, reducing the
size of data either by encoding or removing the redundant and

irrelevant information becomes necessary if one wants to achieve
good performance in the prediction. Functional regularization as
well as Bayesian methods have attempted to attack this problem by
restricting the set of hypothesis that can be implemented by a
learning machine, theoretical as well as empirical evidence justify
their widespread use. Among the algorithms that belong to this
context, we can find the support vector machines, relevance vector
machines, Gaussian processes for classification. Although, these
methods have succeeded on various tasks, they do not solve the
problem of identifying irrelevant information, explicitly. As a
consequence, performance tends to degrade in the presence of
many variables that do not reflect relevant information for the
problem. Dimensionality reduction comes into play as a very
important stage to overcome the above limitation. It is then not
surprising that research on this field has remained active during the
last years [4,5].

Dimensionality reduction techniques are mainly divided into
two groups: feature selection and feature extraction methods;
both attempt to reduce dimensionality, nonetheless,they are
based on different objectives. Feature selection can be understood
as a explicit selection of a subset from input set of variables;
whereas feature extraction comprises transformations of the
input set to obtain a new set of variables that can represent the
problem under some optimality criterion. In short, the problem
consists on finding a subset of features that can be efficiently
encoded preserving the relevant information related to the task.
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Feature selection can be addressed either as a binary search or
as a weighting procedure. Binary search involves explicit
enumeration of the subsets of features by assigning to each
subset an indicator variable (e.g. binary vector). Feature weighting
relax this constraint by letting the indicator variables take
continuous values to weight each feature. The reason for using
continuous values is the possibility to include differentiable
penalties in the target function that allows the use of mathema-
tical programming tools to optimize weights. Recent work in this
area has been directed towards methods that incorporate
sparseness; clear examples of this trend are L1 regularization
[6], commonly known as the Lasso approach and combined L1 and
L2 [7], which is called elastic-net regularization, and related
methods such as the ones presented in [8]. In this work, we
address the problem of dimensionality reduction by finding a
relevant subset of projected features (joint feature selection and
extraction); this formulation corresponds to a weighted feature
extraction. We relate the problem of finding relevant information
to a rank deficient formulation for dimensionality reduction that
suggests some desirable properties for weighting schemes. We
focus our discussion around formulations for supervised weighted
principal component analysis (WPCA) and weighted regularized
discriminant analysis (WRDA) as suitable methods for feature
extraction with built-in feature selection. Weighted versions of
PCA have already been employed for image processing applica-
tions [9]. Within the statistics community this formulation is
understood as a generalized form of PCA [10]. The generalized
PCA consider weighting operations on both instances and
variables. For example, in [28] a linear projection that takes into
account local structure and class information is presented. The
derived solution can be understood as a form of PCA that performs
weighting on the instances. It is clear then that the choice of the
weights is rather an open problem. In our case the ratio between
two matrix traces serves as the objective function that guides the
variable weighting. This scheme turns out to be a constrained
optimization problem where constraints are optimization pro-
blems themselves.

One interesting question is whether these built in feature
selection methods can be extended to other problems where
explicit enumeration seem to be the only reasonable approach.
Functional data analysis appears to be one of such cases. The
extension of the existing multivariate methods to more involved
representations such as infinite dimensional objects is not quite
obvious. Our work explores a first attempt to extend our feature
selection method to the functional data analysis framework.

The paper is organized as follows: a review and reformulation
of the concept of relevance in terms of relevant mappings is
presented; this alternative view agrees with our approach to the
problem as a rank deficient problem, for which we provide a
simplified treatment in terms of linear operators in Hilbert
spaces; then we derive algorithms for WPCA and WRDA. We also
propose a simple extension to more general type of representa-
tion were each object is represented by a set of stochastic
processes with the same index set. Finally, we provide some
results on artificial as well as real data. For the functional
adaptation methodology, we test on artificially generated
Gaussian processes with very interesting results.

2. Relevance

Roughly speaking, the purpose of dimensionality reduction is
to find a transformation of the original data (initial representa-
tion) that preserves the relations with some target variable while
maintaining the set of descriptors as small as possible. Notice, this
definition also considers the cases of non-linear transformations

that can be thought as mappings to high dimensional spaces, on
which we want to keep the dimensionality of the mapped data as
low as possible (a subspace of the high dimensional space).

Definition 2.1 (Relevance [11,12]). On the basis of prior evidence
E, a hypothesis H is considered, and the change in the likelihood of
H due to additional evidence I is examined. If the likelihood of H is
changed by the addition of I to E, I is said to be relevant to H on
evidence E; otherwise it is irrelevant. In particular, if the
likelihood of H is increased due to the addition of I to E, I is said
to be positively relevant to H; if the likelihood of H is decreased, I

is said to be negatively relevant.

The above definition of relevance agrees with the common
sense notion of the word. The evidence is provided by the features
and their relevance to the hypothesis is measured in terms of an
objective function which increases or decreases according to the
employed set of descriptors. Now, we need a way to quantify the
relevance in order to translate the above statement into a
concrete implementation. In machine learning, the most wide-
spread definition of relevance compares conditional probability
measures of predicted variables (hypothesis) given different sets
of predictors (prior and additional evidence) [1]. Let
n¼ fx1,x2, . . . ,xpg be the full set of descriptors, n�i ¼ n\xi (the
complement of xi in n), and Y the target variable.

Definition 2.2 (Strong relevance). A descriptor xi is strongly
relevant iff

PðY jn�i ,xiÞaPðY jn�i Þ:

Definition 2.3 (Weak relevance). A descriptor xi is weakly
relevant iff

PðY jn�i ,xiÞ ¼ PðYjn�i Þ,

and (n�i � n�i , such that

PðY jn�i ,xiÞaPðYjn�i Þ:

Corollary 2.1 (Irrelevance). A descriptor xi is irrelevant iff

8n�i � n�i ,PðY jn�i ,xiÞ ¼ PðY jn�i Þ:

Consider the set of objects X , associated with each xAX there is
an element yAY. Let BX�Y be the s�algebra of X � Y, and a
probability measure PX�Y , so we have a measure space. We will
consider n as a set of measurable functions each one from X to
their range space RðxiÞDOi; we refer to the space containing the
range of this function as the initial representation space
ðO1 � � � � �Op ¼O,BOÞ. Now consider a set of measurable func-
tions T ¼ fTj : O/O�j g, where O� ¼O1 � � � � �Oc is an alternative
representation space provided with a Borel s�algebra BO. We say
that T is relevant iff

PðY jnÞ ¼ PðYjTÞ and PðY jnÞaPðYjT\TiÞ for all i:

In the supervised setting, where correspondences between X and
Y are available, the above definition fits either for feature
selection or feature extraction. The first case can be understood
as a permutation and clipping map to some of set of relevant
descriptors, by this we do not really mean the map implies the
smallest achievable dimension, but in terms of strong and weak
relevance an optimal subset must contain only strongly relevant
elements. Regarding feature extraction, the simplest example
would be a two-class linear discriminant analysis with idealized
conditions i.e. equal, isotropic within class covariance matrices
and different mean vectors. In this case the conditional prob-
ability of the class by projecting the data onto the line with the
maximum Fisher score does not eliminate the necessary informa-
tion to obtain the same labels. The unsupervised problem is a
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