Neurocomputing 73 (2010) 1794-1800

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

Neurocomputing

Fast hopfield neural networks using subspace projections

Daniel Calabuig*, Sonia Gimenez, Jose E. Roman, Jose F. Monserrat

Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

ARTICLE INFO ABSTRACT

Available online 12 March 2010

Keywords:

Hopfield Neural Networks
Linear Constraints
Projection.

Hopfield Neural Networks are well-suited to the fast solution of complex optimization problems. Their
application to real problems usually requires the satisfaction of a set of linear constraints that can be
incorporated with an additional violation term. Another option proposed in the literature lies in
confining the search space onto the subspace of constraints in such a way that the neuron outputs
always satisfy the imposed restrictions. This paper proposes a computationally efficient subspace

projection method that also includes variable updating step mechanisms. Some numerical experiments
are used to verify the good performance and fast convergence of the new method.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A Hopfield Neural Network (HNN) is a specific kind of
recurrent neural network designed for the minimization of an
energy function that contains several terms [9]. From the Hopfield
neuron model, any problem that can be written in terms of a
second order Lyapunov function can be solved with a quasi-
optimal solution using HNNs. These neural networks have gained
much relevance in the last decade as a good tool to solve complex
optimization problems, mainly thanks to their fast response time.
Certainly, one of the main advantages of neural techniques is the
high computational speed obtained through their hardware
implementations, which is even more valuable when considering
their usage for industrial applications. Actually, the use of HNNs
has been recently suggested for several time-constrained practical
problems due to this characteristic—see for example [2,4,5].

However, HNNs have also acquired many detractors because of
the poor quality of the obtained solutions, mostly when the
energy function is non-convex [8]. This condition provokes some
additional problems related to the convergence to non-desired
local minima. These problems could be solved by means of a fine
tuning of the energy function parameters that properly penalizes
the non-desired states [4]. In general, a mathematical analysis of
the borderline cases must be performed in order to derive the
proper weighting values. However, this problem becomes even
more complex in practical optimization problems, since reality
imposes a set of strict constraints that must be taken into account.
Consequently, in real problems a set of linear constraints is
incorporated in the energy function, adding some additional

* Corresponding author. Tel.: +34963879582.
E-mail addresses: dacaso@iteam.upv.es (D. Calabuig), sogico@teleco.upv.es
(S. Gimenez), jroman@itaca.upv.es (J.E. Roman), jomondel@iteam.upv.es
(J.F. Monserrat).

0925-2312/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2009.12.031

constraint violation terms [9]. Despite being a common practice,
some authors have demonstrated that the inclusion of the
violation terms results in more likely invalid solutions [13] and
even in a change in the network behaviour [3]. The underlying
problem that causes these convergence problems lies in the fact
that the cost terms run contrary to the constraint terms and, as a
result, the networks converge to local minima far from the
absolute minimum.

In order to tackle this problem, some authors proposed to
confine the HNN to the feasible constraint subspace, hence
ensuring the final solution validity [6,11]. Chu [6] proposed to
project the energy gradient, which indicates the direction of
movement, modifying the neuron inputs in such a way that the
neuron outputs are always in the constraint plane. Although this
seminal work was the first one bringing forward the usage of
Projection-based HNNs (P-HNNs), it assumed a continuous-time
neural network and no reference was made to a more realistic
implementation which is inherently discrete in time. The main
consequence is that discrete-time implementations continuously
separate from the feasible subspace due to large computational
errors when neurons are near the extremes. Moreover, the
projection matrix was explicitly calculated from the constraints
matrix, without considering issues of practical relevance such as
computational efficiency and numerical robustness. On the other
hand, Smith et al. [11] defined an iterative mechanism based on
the integration of the projection of the neuron outputs - instead
of projecting the energy gradient — together with an annealing
technique for escaping local minima by permitting, in a controlled
way, increments of the energy function. Comparing this
mechanism with [6], both use the same calculation method
for the projection matrix. However, Smith et al. incorporated
more effective means to guarantee stability and convergence to
feasible solutions, but at the expense of extremely increasing the
computational burden.

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2009.12.031
mailto:dacaso@iteam.upv.es
mailto:sogico@teleco.upv.es
mailto:sogico@teleco.upv.es
mailto:jroman@itaca.upv.es
mailto:jomondel@iteam.upv.es
mailto:jomondel@iteam.upv.es

D. Calabuig et al. / Neurocomputing 73 (2010) 1794-1800 1795

This paper presents a new, computationally efficient subspace
projection method that includes the variable updating step
mechanism proposed by Talavan and Yafez [12]. Once the
direction of movement is confined in the subspace of constraints,
neuron states are modified so that the energy is reduced as much
as possible. The proposed method performs projections by means
of the orthogonalization with respect to an appropriate basis of
vectors. This basis is dynamically augmented in order to
guarantee that the modified neuron state vector does not exit
the space of allowed solutions. This numerical procedure for the
projection is computationally efficient.

Concerning the implementation of this Fast HNN (F-HNN), it is
worth highlighting that, although some authors state that the
HNN response could be attained in a few microseconds [2], this
order of magnitude corresponds with the analogue implementa-
tion of continuous HNN. Nevertheless, so far the performance of
HNN has been determined assuming a discrete-time implementa-
tion in computers and without implementing the analogue circuit.
This fact is due to the enormous size of the hardware network
when considering a high number of neurons and the difficulty of
accurately implementing the resistor values, which can change
network behaviour. In fact, the few hardware implementations
found in the literature have been developed on digital devices, for
example [1], in order to reduce the size of the network and solve
the precision problems in the resistors’ values. However, these
implementations lose the benefits of the parallel interworking,
since they make use of a central processing unit to update the
neuron outputs sequentially in each iteration. An implementation
on a computer can exploit the increasing potential of parallelism
offered by current processor architectures. The proposed F-HNN
method retains this inherent capability of parallelization so that
fast response times can be expected. Even in a sequential
implementation, the method presents advantages. Some numer-
ical experiments are used to verify the performance and fast
convergence of the proposed method as compared with other
P-HNN techniques.

2. Mathematical foundations of the fast hopfield neural
network

The objective of this section is to describe the main
mathematical principles on which the F-HNN proposed in this
paper is based. With this aim, the classical HNN is firstly
explained. Next, there is a description of the two main concepts
that, jointly used, enable the fast convergence of the new neural
network: the variable updating step and projection of the energy
gradient. In Section 2.5, another possibility that consists in
executing variable reduction methods before the optimum search
is discussed, justifying why this option was dismissed. The last
part of this section deals with some efficient computational
methods to reduce the number of operations and numerical
errors. Section 3 summarizes the set of steps to be taken in each
update of the F-HNN state.

2.1. Fundamentals of hopfield neural networks

HNNs can be completely defined with an energy function of
the form [9]:

E(0) = — 3 v(O Tv(O-iv(D), M

where v(t) is the N x 1 vector of the neuron outputs at time t with
elements V;(t) €[0,1], T is an N x N symmetric matrix, i is an N x 1
vector, with elements T; and I;, respectively, of constant
parameters that define the neural network, and N is the number

of neurons. These parameters should be selected so that the
energy minima inside the unit hypercube, i.e., Vj(t) € [0,1], are the
desired solutions of the optimization problem.

Let d(t) be defined as the N x 1 vector of the updating direction
at time t. Then, each neuron is updated following:

Vi(t+1) = Vi) + Ai(D),)
0, di(t)>0, Vi(t)=1,
B(t)d;(t), otherwise,

where f(t) > 0 is the updating step at time t, and d(t) is the i-th
element of d(t). The updating step and direction must be selected
to make the network converge towards a local minimum of the
energy. For that reason, the updating direction is typically minus
the energy gradient in the bibliography, since it points to the
maximum decrement of the energy. However, any direction with
a negative directional derivative decreases the energy too and
hence is also a good candidate. The updating step is typically
constant but, if so, has to be sufficiently small to prevent
oscillations. Therefore, a lot of iterations are needed until the
convergence point is reached.

2.2. Variable updating step

The Variable Updating Step (VUS) technique was proposed by
Talavan and Yaiez [12] to increase the convergence speed of the
neural network. The idea is to move in the direction d(t) until the
energy minimum - in that direction - is reached. The energy over
direction d(t) is:

E(v(t)+od(t)) = — % () +od () T(v(t)+ad(t)—i (v(H) +od(t), (4)

E(v(t)+od(t)) = E(V(t)—S1 00+ Sy02, (5)
S1 = d(ty (TV(t) +i), (6)
Sy = —d(t)Td(t). (7)

Parameter « is any possible updating step. The energy of Eq. (5)
is a quadratic function with respect to o. Thus, it has a critical
point that can be either a maximum or a minimum. This critical
point is [12]:

dE(v(t)+ ad(t)) _ _ S
B a— o(:ag—0:>a0—§- ®

It is worth noting that S; is minus the directional derivative of
the energy over the direction d(t). Therefore, let us assume that
S1>0 and hence that direction d(t) points towards points with
less energy, i.e.:

Je>0: Vo,0<a<e—EWv(t)+ad(t)) <E()). 9)

Moreover, S, is the second derivative of the energy of Eq. (5)
with respect to «. Therefore, if S, > 0, then the critical point ¢ is a
minimum of Eq. (5). Conversely, if S, <0, then o is a maximum.
In the first case, the VUS should be o at most, since greater steps
will further not reduce the energy and could even increase it. In
the second case, the VUS can be as high as possible, since the
energy will continuously decrease in the direction d(t).

Additionally to the previous paragraph, the VUS must satisfy
some other constraints. More specifically, the updated neuron
outputs must remain in the unit hypercube, i.e,
v(t)+ ft)d(t) € [0,1]V. For this aim it is necessary to take into
account the distances between the current neuron outputs and
the extremes 0 and 1. Let us define I(t) as the N x 1 vector of limits

Download English Version:

https://daneshyari.com/en/article/412797

Download Persian Version:

https://daneshyari.com/article/412797

Daneshyari.com

https://daneshyari.com/en/article/412797
https://daneshyari.com/article/412797
https://daneshyari.com/

