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a b s t r a c t

Two discriminant criteria—quotient and difference, are commonly used in linear discriminant analysis.

In the paper, we experiment with the CENPARMI handwritten numeral database, the NUST603

handwritten Chinese character database, the ORL face image database and the FERET face image

database and find that the quotient criterion is better than the difference criterion for large sample size

problems such as the character recognition, while the difference criterion is better for small sample size

problems such as face recognition. Through theoretical analysis, the defect of the difference

criterion—the correlation among discriminant vectors is revealed, and it is testified that the quotient

criterion is superior to the difference criterion in general, if the instability of denominator can be

overcome. Otherwise, the difference criterion might be better. Finally, the two criteria (quotient and

difference) are unified into one framework in the paper.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the past years, many works have been done to deal with the
issue of classification [12]. In summary, classification can be
categorized into two parts in general—supervised and unsuper-
vised. The former focuses on the known class label in the training
samples, the most widely used method is Fisher linear discrimi-
nant analysis (FLDA) [23,7,4]; while the latter stresses on using
the unknown class label samples to evaluate what class they
belong to, for which several methods can be taken, such as locality
preserving projection (LPP) and so forth [10,14]. And in this paper,
the statement and analysis on the supervised FLDA method is
provided.

The classical LDA is raised by Fisher in 1936 for the first time,
aiming at seeking some directions for projection, onto which the
within-class scatter should be minimized while the between-class
scatter should be maximized [23]. In 1975, Foley and Sammon did
some improvement work for FLDA, and pointed out that the
discriminant vectors should be orthogonal mutually [24]. The
famous Rayleigh quotient is successfully applied to FLDA by
maximizing the ratio of the between-class scatter to the within-
class scatter if projected onto some directions, which is called
quotient criterion. And it is quite widely used in linear
discriminant analysis [1,4,5,7,19,20,27].

Another one is difference criterion, in which the projection axis
are attempted to be found where the result after between-class
scatter deducting within-class scatter should be as large as

possible [2,3,13,17,28]. Both of the two criteria are consistent
with the main idea of maximal between-class information, as well
as minimal within-class information [2,3,16].

LDA can be performed directly in the original input space with
respect to large sample size cases, such as the character
recognition, because the number of training sample surpasses
the dimension of the original input vector space, thus the problem
of singularity can be avoided. However, with respect to small
sample size problems such as face recognition, doing LDA
transformation directly will encounter with singularity and
computational difficulty. PCA transformation is operated in order
to bring about convenience to LDA. For the sake of expressing and
retaining the original useful information in high dimension and
mapping it into low dimension as much as possible, it can be
solved conveniently in PCA transformation by singular value
decomposition (SVD) [5]. After that, the vector space has been
reduced from high to low, and the minimum square error is
ensured when reconstruction work is done [21,22]. It has been
evidenced that, doing PCA transformation in the first step, and
doing LDA transformation in the second step is equal to doing LDA
directly in the high dimensional original input space [1]. It can be
concluded that, PCA plus LDA is a common combined method in
dealing with feature extraction and classification towards high
dimensional and small sample size cases [6,11,15].

In this paper, we systematically compare the two criteria—

quotient and difference, from the viewpoints of stability and
correlation respectively. Although singularity of total-scatter can
be eliminated in PCA transformed space, the within-class scatter
located in the denominator of Rayleigh quotient is still instable
because of the small sample size problem [18]. However, the
problem does not exist in difference criterion, since the stability of
the within-class scatter is taken into no consideration. So it is
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often seen that difference criterion can demonstrate better
recognition accuracy, compared to quotient criterion, in terms
of small sample size.

As for large sample size, the within-class scatter in the
denominator is stable, so quotient criterion is superior to
difference criterion generally. This is because the former can
generate uncorrelated optimal discriminant vectors in LDA
transformation while the latter cannot. That is to say, the
discriminant vectors produced by difference criterion are not
orthogonal mutually, which put adverse influence in recognition.

Fortunately, regularization can be done to make the within-
class scatter in the denominator a little bigger, to overcome the
instability in quotient. Hence, the recognition rate can improve to
be much better [4]. Finally, the two criteria might be unified into
one framework, to forge one function to do LDA. After that, the
recognition rate can arrive at the peak, when the parameter in the
function can be varied within some certain scope, to adjust
the balance between quotient and difference.

The following sections in the paper is arranged like this: some
introduction of FLDA is presented in Sections 2 and 3 shows the
experiments and the results on large and small sample size cases,
analysis for the experimental results is given in Section 4, the
combination of the two criteria is discussed in Section 5, and a
final conclusion is made in Section 6.

2. Linear discriminant analysis (LDA)

Suppose that L is the number of classes, and Nc is the number
of samples in class c, so the equation mc ¼ 1=Nc

P
iA cxi represents

the mean of samples in class c. Suppose that N is the total number
of all samples, then x

_
¼ 1=N

P
ixi ¼ 1=N

P
cNcmc , and this equation

stands for the total mean of the whole samples.
The between-class scatter matrix Sb, the within-class scatter

matrix Sw, and the total-scatter scatter matrix St can be
respectively defined as follows [7]

Sb ¼
X

c

Ncðmc�x
_
Þðmc�x

_
Þ
T

ð1Þ

Sw ¼
X

c

X
iA c

ðxi�mcÞðxi�mcÞ
T

ð2Þ

St ¼
X

i

ðxi�x
_
Þðxi�x

_
Þ
T

ð3Þ

And it is easy to show that St¼Sb+Sw.

2.1. Two discriminant criteria based LDA methods

Quotient-LDA

The quotient criterion (i.e. Fisher criterion) is defined as
follows

JðWÞ ¼
WT SbW

WT SwW
ð4Þ

Maximizing the quotient criterion can be converted into finding
the generalized eigenvectors of SbW ¼ lSwW , or equivalently
finding the eigenvectors of S�1

w Sb. Since St¼Sb+Sw, the quotient
criterion can be rewritten as

JðWÞ ¼
WT SbW

WT StW
ð5Þ

So the problem is equivalent to find the generalized eigenvec-
tors of SbW ¼ lStW .

Difference-LDA

The difference criterion is defined by

JðWÞ ¼WT ðSb�D � SwÞW , subject to WT W ¼ 1, ð6Þ

where D is the parameter to adjust the magnitude of Sw to balance
Sb and Sw.

Maximizing the difference criterion can be converted into
finding the eigenvectors of ðSb�D � SwÞ. Suppose that
Z1,Z2 . . . . . .Zm are the eigenvectors of ðSb�D � SwÞ corresponding
to the m largest eigenvalues. Then, the transformation matrix of
Difference-LDA is [P¼ ½Z1,Z2 . . . . . .Zm�.

If Sw is singular, with the increase of the value of D from 0 to
infinite, the discriminant vectors of difference criterion are more
and more from the null space of Sw. When D approaches infinite,
the discriminant vectors are solely from the null space of Sw

because limD-1WT SwW ¼ 0. For more details, refer to [2,17].
If Sw is nonsingular, with the increase of D, the largest

eigenvalue from Eq. (6) decreases continuously, even to be
negative (i.e.SboD � Sw, if projected onto any direction). It leads
to much lower recognition rate, because the between-class
information and the within-class information overlap together
[17]. Therefore, the value of D should not be too large.

2.2. Distinction of two methods from the correlation point of view

In this subsection, we will show the Quotient-LDA transformed
features are mutually uncorrelated, while the Difference-LDA
transformed features not.

Theorem. (Yang et al. [8]) There exists n eigenvectors j1,j2, . . . ,jn

of SbW ¼ lStW which satisfy the following property:

jT
i Stjj ¼ dij ¼

1 i¼ j

0 ia j
i,j¼ 1, . . . ,n,

(
ð7Þ

jT
i Sbjj ¼

li i¼ j

0 ia j
i,j¼ 1, . . . ,n,

(
ð8Þ

where liði¼ 1, . . . ,nÞ is the generalized eigenvalue corresponding to

the eigenvector ji ði¼ 1, . . . ,nÞ.

If we suppose F¼ ½j1,j2, . . .jd� is a set of optimal discriminant
vectors corresponding to the largest d positive eigenvalues, and
Y is the original set of vectors, then after the Quotient-LDA
transformation, we get a new transformed d-dimensional space:
Z ¼FT Y , and of which Zi ¼jT

i Yði¼ 1,2, . . . dÞ
The covariance between Zi and Zj is:

CovðZi,ZjÞ ¼ EðZi�EZiÞðZj�EZjÞ ¼jT
i fEðY�EYÞðY�EYÞTgjj ¼j

T
i Stjj

ð9Þ

Accordingly, the correlation coefficient between Zi and Zj is
defined as

rðZi,ZjÞ ¼
jT

i Stjjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jT

i Stji

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jT

j Stjj

q ð10Þ

Therefore, if rðZi,ZjÞ ¼ 0, and ia j, then Zi and Zj is uncorrelated
mutually. In a word, the Quotient-LDA transformation can
eliminate the correlations between features [9,25,26].

The Difference-LDA, however, does not hold this property. This
is because that the discriminant vectors of Difference-LDA (i.e. the
eigenvectors of the matrix ðSb�D � SwÞ) are orthogonal, rather than
St-orthogonal.

3. Experiments and analysis

In this section, the performance of Difference-LDA and
Quotient-LDA is done on the CENPARMI handwritten numeral
database, the NUST603 handwritten Chinese character database,
the ORL face image database and the FERET face image database.
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