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In this paper we provide a comprehensive performance evaluation of vector quantization (VQ)
algorithms as building blocks for designing local models for inverse system identification. We describe
how VQ algorithms can be used for learning compact representations of the task of interest from
available input-output time series data and how this representation can be used to build local maps
that approximates the global inverse model of the system. The performances of the resulting local
models are compared to the standard global (multilayer perceptron) MLP-based model in the task of
inverse modeling of four well-known single input-single output (SISO) systems. The obtained results
show that VQ-based local models perform better than the MLP in all the studied tasks.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

System identification is concerned with the development of a
regression model that describes the behavior of a dynamic system
from measurements of its inputs and outputs. Knowing a model
that describes the diversity of behaviors that a dynamic system
can reveal, specially the nonlinear ones, is essential not only for
theoretic or applied research fields, but also for the process or
control engineer who is interested in understanding better the
dynamics of the system he/she is dealing with. As an ultimate
goal, the resulting model should imitate the actual system as
faithfully as possible in order to be used for several additional
purposes, such as predictive control or fault detection.

System identification techniques can be classified into two
broad categories: global and local models. Global approaches
adopt a single model to represent the input-output behavior of
the system. In the context of the current paper, a global model
comes in the form of a single neural network model, such as the
multilayer perceptron (MLP) [34]. Global models represent the
mainstream in applications of nonlinear system identification and
control [35,36].

Local approaches utilize instead multiple models to represent
the input-output behavior of the system [25]. In few words, the
input space is usually divided into smaller (localized) regions,
each one being associated with a simpler model. To estimate the
system output at a given time, a single model is chosen from the
pool of available local models according to some criteria defined
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on the current input data. In a nutshell, local models perform
local linearization and their structure is quite similar to the
Takagi-Sugeno fuzzy models [44].

If the local models are formulated as linear autoregressive
models with exogenous inputs (ARX, for short), then we have a local
ARX modeling approach, widely used within the adaptive control
community [38]. This approach is closely related with the piecewise
linear function approximation method, whose underlying idea is to
specify a set of hyperplanes (that is, adaptive filters), each one
locally used, in order to approximate the nonlinear surface that
defines the input-output mapping of interest.

Obviously, the main advantage of the local modeling approach
over the global one relies on the fact that complex (e.g. nonlinear)
dynamics of the input-output mapping can be represented by
simpler linear mappings. Another advantage is interpretability.
Since local models are used, one can easily associate IF-THEN
rules with them in order to describe the current status of the
system. A clear disadvantage of local models is that the user has to
define beforehand how many local models are going to be used.

In the neural network literature, local modeling techniques
have been implemented through the use of the self-organizing
map (SOM) [3,12,6,11,4,41]. The SOM [24] is an unsupervised
competitive learning algorithm which has been commonly
applied to vector quantization and data visualization tasks. The
results reported on those studies are rather appealing, indicating
that SOM-based local models can be feasible alternatives to global
models based on supervised neural network architectures, such as
the MLP and RBF (radial basis function). However, many questions
still remain unanswered.

For example, concerning the VQ algorithm used to build the
local models, what is the effect on the performance in case of
using other VQ algorithm than the SOM? There are many VQ
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algorithms available in the machine learning community, such as
the K-means [30], standard winner-take-all (WTA) competitive
learning [42], frequency sensitive competitive learning (FSCL) [1]
and the fuzzy competitive learning (FCL) [13], to mention just a
few of them. However, none of them so far have been used for the
purpose of building local models for system identification. Would
they perform better than the SOM in this regard? This is an
important issue, since some of these VQ algorithms are compu-
tationally lighter than the SOM (e.g. K-means and FSCL).

Another important issue is concerned with the identification of
inverse mappings through VQ-based local models. As far as we are
aware, the VQ-based local modeling approach has not been
applied to such task yet. The aforementioned works report results
on the identification of forward models of the dynamic system of
interest. This can be partly explained by the fact that inverse
modeling is an ill-posed problem, subject to several difficulties
that are hard to tackle, such as non-minimum phase systems and
multiple solutions. Later in this paper we elaborate more on the
issue of inverse modeling and its application.

And last but not least, an important issue is concerned with the
evaluation of the performance of local models themselves. The
vast majority of previous works on local modeling for system
identification do not provide in-depth statistical analysis of the
models’ results. Usually, only MSE values are provided, but much
more are required, such as the residual analysis and hypothesis
testing.

In this paper we initially introduce strategies for building local
inverse models using the SOM network. Then, we evaluate the
performance of local inverse models built using the SOM and
several other VQ algorithms on four different input-output
datasets. The performances of these local models are also
compared with those resulting from global MLP-based inverse
models. Finally, a comprehensive analysis of the residues of all
models are carried out in order to test how different they are from
the statistical viewpoint.

The remainder of the paper is organized as follows. In
Section 2, we discuss a bit further the issue of inverse modeling
and its use in control systems. In Section 3, the SOM network and
its learning process are briefly described. In Section 4, three SOM-
based local modeling approaches are introduced. Simulations and
performance are presented in Section 5. The paper is concluded in
Section 6.

2. The inverse system identification task

There are many real-world dynamic systems which need to be
monitored and controlled on the basis of readings obtained, for
instance, from distributed sensors in an industrial plant [33,14]. In
this scenario, decisions must be taken constantly in order to
maintain the behavior of the system within appropriate limits.
Common strategies for controlling the behavior of dynamic
systems require forward and/or inverse models of the system.
The Internal Model Control [22] architecture uses, for example,
both the forward and inverse models for controlling a given
system.

Inverse models should provide a faithful representation of the
inverse mapping within the operational regions of interest.
Inverse modeling is a signal processing task usually considered
much more difficult to deal with than forward modeling, since
multiple solutions may exist. Thus, inverse modeling belongs to
the class of ill-posed problems.

There are several ways to carry out the inverse identification
process. The most common technique used for this purpose is
known as the generalized inverse learning method [20,21].
According to this method, the model is fed with the current
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Fig. 1. Generalized method for the training of inverse neural networks for control.

desired output (or reference value) together with past inputs and
past outputs to predict the current input (or control action). Fig. 1
illustrates the generalized inverse learning method. The neural
network block denotes an adaptive global/local model that tries to
learn the inverse mapping of the system. The desired output
value, u(t), corresponds to the required set point or reference
signal and {i(t) corresponds to the predicted output.

In this paper, we evaluate the proposed VQ-based local
modeling approaches on providing faithful inverse mappings of
four benchmarking input-output systems. For this purpose we
adopt the generalized inverse learning method strategy.

3. The self-organizing map

The self-organizing map (SOM) is a well-known competitive
learning algorithm. The SOM learns from examples a mapping
(projection) from a high-dimensional continuous input space X
onto a low-dimensional discrete space (lattice) A of N neurons
which are arranged in fixed topological forms, e.g., as a
rectangular two-dimensional array. The map i*(x) : X — A, defined
by the weight matrix W = (wy,wy, ..., W), w; e RP C &, assigns to
each input vector x(t)e R°P c X a winning neuron i*(t)e A,
determined by

i*(t) = argn}/inllx(t)—wi(t)l\, 1)

where | - Il denotes the Euclidean distance and t symbolizes a
discrete time step associated with the iterations of the algorithm.

The weight vector of the current winning neuron as well as the
weight vectors of its neighboring neurons are simultaneously
adjusted according to the following learning rule:

wi(t+1) = w;(t) + (O™, i; OX(O—-w;(D)], )

where 0 < «(t) <1 is the learning rate and h(i*,i;t) is a weighting
function which limits the neighborhood of the winning neuron.
A usual choice for h(i*,i; t) is given by the Gaussian function:
B r,—(t)—r,-*(t)lz>

202(t) 3

h(i*,i; t) = exp (
where r;(t) and r.(t) are, respectively, the coordinates of the
neurons i and i* in the output array, and a(t) > 0 defines the radius
of the neighborhood function at time t. The variables o(t) and o ()
should both decay with time to guarantee convergence of the



Download English Version:

https://daneshyari.com/en/article/412818

Download Persian Version:

https://daneshyari.com/article/412818

Daneshyari.com


https://daneshyari.com/en/article/412818
https://daneshyari.com/article/412818
https://daneshyari.com/

