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In this paper, we investigate a class of cellular neural networks model with delays and diffusive terms.
By using the method of upper and lower solutions, we obtain that if the neuronal output signal
functions in system possess mixed quasimonotone property and the corresponding elliptic system has
upper and lower solutions the model has a unique nonconstant equilibrium solution. Under some
additional conditions we further obtain that the solution of the neural networks converges to this
nonconstant equilibrium solution.
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1. Introduction

In recent years, many authors have been investigating the
dynamical behaviors of cellular neural networks with or without
diffusive terms due to their applications in associative memory,
parallel computation, pattern recognitions, signal processing and
optimization problems [1,2]. In fact, earlier applications of neural
networks to optimization problems have suffered from the
existence of a set of equilibria [3,4]. And, the global attract of
unique equilibrium for neural networks is also of great impor-
tance [5,6]. A qualitative analysis of the global asymptotically
stable equilibrium point for cellular neural networks is of wide
interests and has been the concern of many authors [7-10].
Studies on cellular neural networks not only involve a discussion
of stabilities, but also involve many dynamic behavior such as
periodic oscillatory behavior and bifurcation [11]. Furthermore,
equilibrium and asymptotic behavior of different class of neural
networks such as Cohen-Grossberg neural networks, Hopfield
neural networks and recurrent neural networks have been
intensively studied in the past decades [12-14].

However, strictly speaking, diffusion effect cannot be avoided
in neural networks when electrons are moving in asymmetric
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electromagnetic field. In [15-21], the stability of neural networks
with diffusive terms, which are expressed by partial differential
equations, has been considered. And the most of boundary
conditions of investigated diffusive neural networks [15-22] are
the Neumann boundary conditions. To our knowledge, there are
few studies on diffusive neural networks with Dirichlet boundary
conditions [23,24].

Furthermore, most of the discussions in the former works are
the existence and uniqueness of constant equilibrium point and
its properties of asymptotic behavior. In [23,24], the author
discussed global exponential stability of constant equilibrium
point for the following reaction-diffusion delayed neural net-
works with Dirichlet boundary conditions:
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We find that constant equilibrium point of the above system is
only equal to (0,0,...,0)" since it is restricted by Dirichlet boundary
conditions. Thus, from the equations we know that the equations
Z}’;] agfi(0)+ Z}Ll b;;gi(0)+I; = 0 must hold in order to ensure
the existence of constant equilibrium point. Generally, this
condition is difficult to be satisfied in reality.

Motivated by the above discussion, in this paper, we consider
the following delayed diffusive neural networks with mixed
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boundary conditions:
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The operators B; are given by
ou; .
Biu; = 0‘:'5711 +Bixu; (i=1,...,n),

where for each i (i=1,2,...,n), B; is of either Dirichlet type
(o; =0, B;(x) = 1), or Neumann-Robin type («; =1, f;(x) > 0).

We firstly discuss the nonconstant equilibrium solution of
system (1) which is solution of corresponding elliptic system in
relation to system (1)
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We discuss that for given initial conditions, system (1) exist
unique solution and it is convergent to its corresponding
nonconstant equilibrium solution as t—oo under some condi-
tions. The previous investigations about diffusive neural networks
are either Dirichlet boundary conditions or Neumann conditions.
That is to say, we consider here the more general boundary
conditions which conclude in the above boundary conditions.

In the past and recent years, the main methods investigating
asymptotic behavior of neural networks are Lyapunov functional
method, inequalities technique and degree theory. In this paper,
we use the method of upper and lower solutions to obtain
asymptotic behavior of solution of system (1). These results are
independent of the time delays.

The organization of this paper is as follows. Firstly, we
introduce some necessary notions and preliminaries in Section
2. In Section 3, by using the method of upper and lower solutions,
asymptotic behavior of solution of system (1) are given. An
example is presented in Section 4 to demonstrate the main
results.

2. Model description and preliminaries

Let Q be the closure of @, and for any finite T > 0 and i=1,...,n,
we set

Dr=(0,T]xQ, Dr=[0,T]xQ, Sr=(0,T]xaQ,

Qg)=[f‘5i,0] x Q, Q0=Qél) x - x QWM.

In system (1), Q is a bounded domain in R" with boundary 0Q.
u(t,x) is the state of the i-th neuron at time t and in space x. ¢; >0
represents the rate with which the i-th unit will reset its potential
to the resting state in isolation when disconnected from the
networks and external inputs, I; represents the external bias on
the i-th unit, f; and g; denotes the output of the j-th unit, t; is the
transmission delay of the j-th unit from the i-th unit at time ¢, a;; is
the strength of the neuron interconnection within the networks
and by is the interconnection with delay ;. Smooth function
D;(x) > 0 represents the transmission diffusion operator along the

i-th neuron, 4 is Laplacian operator, and here we suppose a no-
flux (Neumann) boundary condition and nonnegative initial
distribution.

Throughout the paper, we assume that for each I=1,...,m, Dj(x)
and its first partial derivatives are in C*(Q), ae(0,1). The
boundary coefficient B; is in C'*+#@Q), and 8Q is of class C'+%,
We also assume that #; is Holder continuous on 4Q and Q), and
satisfies the compatibility condition at t=0 when o; =0.

First of all, we give some definitions for a system of parabolic
equations with discrete time delays which is given in the form

ou;(t, x)

at —Liu; = Fi(x,u,u;) in Dr,
Biu; = h,'(X) on St, 3)
ui(t,X) =17;(t,%) > 0 inQy (i=1,....n),

where u=((u(t,x),...,un(t,x)), ur = (U1(t—71,X),...,un(t—7,%)). The
operator L; is given by
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It is assumed that for each i=1,...,n, L; is a uniformly elliptic
operator in Q. The corresponding elliptic system in relation to
system (3) is of the form

—Liu; =Fi(x,u,u) (xeQ), 4

B;u; = hj(x) xe0Q) (i=1,...,n). 4
Assuming that F(x,u,v)=(Fi(x,u,v),....Fy(x,u,v)) is Holder contin-
uous in x and continuously differentiable in u and v for u, v in
some bounded subset Q of R" where u=(u;(t,x),...,u,(tx)) and
v=(v1(tx),...,va(t,X)). Specially, by writing u and v in split forms
u= (U, [ulg, [uly,), v=(Vl, V),

where a;, b;, ¢; and d; are some nonnegative integers with
a;+b;=n—1 and ¢;+di=n. Hence, we can rewrite systems (3) and
(4) in the form
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Definition 1. A vector function F(x,u,v) is said to be mixed
quasimonotone in some subset A of R" if for each i=1,...,n, there
exist nonnegative integers a; b;, ¢; and d; with a;+b;=n—1 and
¢i+d;=n such that for every u = (u;, [u],,, [u]y,) and v = ([v],[V]g) in
A, F{xu,v) is monotone nondecreasing in [u], and [v], and
monotone nonincreasing in [u],, and [v]y. The function F(x,u,v) is
said to be quasimonotone nondecreasing in A if b;=d;=0 for all i.

Definition 2. A pair of @i =(ily,...,0y,), U =(l,...,10,) is called
coupled upper and lower solutions of (5) if &t > i and if
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