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a b s t r a c t

This paper proposes two approaches based on wavelet transform-support vector machine (WT-SVM)

and wavelet transform-extreme learning machine (WT-ELM) for transmission line protection. These

methods uses fault current samples for half cycle from the inception of fault. The features of the line

currents are extracted by first level decomposition of the current samples using discrete wavelet

transform (DWT) and extracted features are applied as inputs to SVM and ELM for faulted phase

detection, fault classification, location and discrimination between fault and switching transient

condition. The feasibility of the proposed methods have been tested on a 240-kV, 225-km transmission

line for all the 10 types of fault using MATLAB Simulink. Upon testing on 9600 fault cases with varying

fault resistance, fault inception angle, fault distance, pre-fault power level, and source impedances, the

performance of the proposed methods are quite promising. The performance of the proposed methods

is compared in terms of classification accuracy and fault location error. The results indicate that SVM

based approach is accurate compared to ELM based approach for fault classification. For fault location,

the maximum error is less with SVM than ELM and the mean error of SVM is slightly higher than ELM.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Transmission line protection is the most elaborate and
challenging function in power system protection. Very often,
fault classification is an overall protection scheme. This is
particularly so in techniques based on a modular approach
whereby correct fault discrimination is very much dependent
upon accurate fault type classification.

For transmission line protection, it is desirable to have a
system of relays to generate a trip signal whenever a fault is
detected within its protection zone. The relay system will be
modular where fault area estimation is very much dependent
upon accurate fault type classification, in which fault type is
verified before verifying fault location [1,2].

Fault location estimation is another desirable feature in any
protection scheme. Locating the fault on the transmission line
accelerates line restoration and reduces the power disruption to
consumers. Fault location based on the line reactance calculation
is a well known technique that has been used to estimate the fault
location [3–5]. The technique is based on linear relation between
the reactance, estimated from the voltage and current measured

at the relay point during the fault, and the fault location. In most
cases, the error in estimating the fault location using these
techniques varies between 1% and 6%.

Application of pattern recognition techniques could be
employed to discriminate between the healthy and faulty states
of the power system. It can also be used for faulty phase detection,
fault classification and location. Recently, different attempts have
been made using pattern recognition techniques for fault
classification and location. Some of the recent papers have used
fuzzy logic [6,7] artificial neural network (ANN) [8–11], and
support vector machine [12,13] for this purpose. In fuzzy based
approach [6], only the nature of the fault has been identified, but
the phases involved in the fault have not been determined. In
recent years, neural networks have been trained to recognize fault
patterns based on the voltage and current waveforms measured at
the relaying point. The success of this technique is due to neural
network’s superior ability to learn and generalize from training
patterns. Although the neural-network based approaches have
been quite successful, the main disadvantage of ANN is that it
requires a considerable amount of training effort for good
performance, especially under a wide variation of operating
conditions [7]. In [12], section identification and classification of
TCSC compensated transmission line is discussed. In [13],
section identification of series compensated transmission line is
discussed. Support vector machine is a recently used popular
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method for classification and regression problems [14,15] because
of its generalization capability [16]. Extreme learning machine is
another recent popular method for classification and regression
problems [17,18] because of its universal approximation
capability [19].

In this paper, an attempt is made to protect transmission line
using WT-SVM and WT-ELM with half cycle data. The proposed
system is tested on a 240-kV, 225-km transmission line under
variety of fault conditions. The proposed approaches classifies all
10 types of short circuit faults (e.g., a–g, b–g, c–g, a–b, b–c, c–a, a–
b–g, b–c–g, c–a–g, a–b–c/a–b–c–g) and locates the fault accu-
rately. These methods are capable of protecting transmission line
under wide variations in operating conditions (i.e. fault resistance,
fault inception angle, fault distance, source impedance and pre-
fault power level) in about half-a-cycle period of fundamental
frequency. The performance of the WT-SVM and WT-ELM has
been tested over a large data set (9600 test cases) considering
wide variation in system operating conditions. The results of WT-
SVM based approach is compared in terms of classification
accuracy and fault location error with WT-ELM.

2. Wavelet transform

Wavelet analysis is a relatively new signal processing tool
and is applied recently by many researchers in power systems
due to its strong capability of time and frequency domain
analysis [20].

The definition of continuous wavelet transform (CWT) for a
given signal x(t) with respect to mother wavelet C(t) is

CWTða;bÞ ¼
1ffiffiffi
a
p

Z þ1
�1

xðtÞC
t�b

a

� �
dt ð1Þ

where a is the scale factor and b is the translation factor. The
Discrete wavelet transform (DWT) can be written as

DWTðm;nÞ ¼
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where original a and b parameters (1) are changed to be the
functions of integers m,n,k which is an integer variable and it
refers to a sample number in an input signal. The wavelet
transform is useful in analyzing the transient phenomena
associated with transmission line faults and/or switching opera-
tions. This technique can be used effectively for realizing non-
stationary signals comprising of high and low frequency compo-
nents, through the use of a variable window length of a signal. The
ability of the wavelet transform to focus on short time intervals
for high frequency components and long time intervals for low
frequency components improves the analysis of transient signals.
For this reason, wavelet decomposition is ideal for studying
transient signals and obtaining better current characterization
and a more reliable discrimination.

The choice of mother wavelet plays a major role in the
characterization of the signal under study. The mother wavelet,
whose characteristics matches closely with the signal under
consideration, would be the best choice. For studying power
system fault signals, it has been reported in the literature that
Daubechies wavelet is the most suitable one [13].

3. Support vector machine

SVM is a computational learning method based on the
statistical learning theory. In SVM, the input vectors are
nonlinearly mapped into a high dimensional feature space. In

this feature space optimal hyper plane is determined to maximize
the generalization ability of the classifier.

The motivation for considering binary classifier SVM comes
from the theoretical bounds on the generalization error [21]. The
main features of the SVM are:

(i) The upper bound on the generalization error does not depend
on the dimension of the space.

(ii) The error bound is minimized by maximizing the margin g.

3.1. Support vector classification

The set of training samples

X ¼ fx1; x2; x3; . . . ; xng; xiARM ð3Þ

where each training samples xi has M features describing a
particular signature and belongs to one of one of two classes

Y ¼ fy1; y2; . . . ; yng; yiAfþ1;�1g ð4Þ

When data is linearly separable there exists a vector wARN and a
scalar bAR such that yiðw � xiþbÞZ1 for all patterns in the
training set (i¼1,2,y,l). Thus, canonical hyper plane is such that
w � xþb¼ 1 for closest points on one side and w � xþb¼�1 for
closest points, on other side. The optimal hyper-plane separates
points lying on opposite classes yielding the maximum margin of
separation. A separating hyper-plane which generalizes well can
be found by solving the following quadratic programming
problem.

Minimize
1

2
Jw2JþCð

Xl

i ¼ 1

eiÞsubject to yiðw � xiþbÞ

Z1�ei; eiZ0 8i ð5Þ

The constrained optimization problem is solved by constructing a
Lagrangian

lðw; b;aÞ ¼ 1

2
Jw2J�

Xl

i ¼ 1

aiðyiðw � xiþbÞ�1Þ ð6Þ

The Lagrangian has to be minimized with respect to the primal
variables w and b and maximized with respect to the dual variable
ai. The Karush–Kuhn–Tucker conditions lead to find the solution
vector in terms of the training pattern, w¼

Pl
i ¼ 1 aiyixi for some

aiZ0. Notice that aia0 only for a subset of the training patterns,
precisely those few vectors that lie on the margin, called the
support vectors (SVs). In the case where a linear decision
boundary is inappropriate the SVM can map the input vector, xi,
to higher dimensional feature space. Under this conditions, a
kernel function K(.,.) can be introduced such that kðxi; xjÞ ¼ xi � xj.
An SVM uses then the convolution of the scalar product to build,
in input space, the nonlinear decision function

f ðxÞ ¼ sgn
�Xl

i ¼ 1

aiyikðx; xiÞþb
�

ð7Þ

where x is test vector, b is found from the primal constraints and
is computed by aðyiðw � xiþbÞ�1Þ ¼ 0, i¼1,y,l, such that ai is not
zero and sgn is the signal function.

3.2. Support vector regression (SVR)

Let the training data be fðx1; y1Þ; . . . ; ðxl; ylÞg � X �R, where
X denotes the space of input patterns. In e-SVR, goal is to find a
function f(x) that has at most e deviation from actually obtained
targets yi for all the training data. In e-SVR, goal is to find a
function f(x) that has at most deviation from actually obtained
targets yi for all the training data. An overview of - SVR algorithm
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