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a b s t r a c t

Tensegrity structures can provide a new approach to the construction of mobile robots with different
shapes and properties that usual robots, wheeled or legged, do not have. Tensegrity are light, deformable
structures that may be able to adapt their form to unconstrained environments. The main issue of
this paper is twofold, first, to derive appropriate and general dynamic equations of motion to study
the movement of such structures in the space; second to demonstrate, by means of simulation, that a
tensegrity structure can execute any desired trajectory path by actuating some or all of its elements.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Tensegrity is an abbreviation for tensile integrity which was
coined by Fuller [5] in the early 60’s. Tensegrity were created
by people coming from the art community, Snelson [20], being
rapidly applied to other disciplines such as in the architectural
context, for structures such as geodesic domes, [4], or later in
space engineering to develop deployable antennas, [23]. A general
definition for a tensegrity was given by Pugh [18]:

A tensegrity system is established when a set of discontinuous
compressive components interacts with a set of continuous tensile
components to define a stable volume in space.

Here, the compressive elements, struts, can not decrease their
lengthwhile the tensile elements, cables, can not increase it. In fact,
there may exist a third kind of element, namely a bar, which can
not vary its length. An example of a tensegrity structure is given in
Fig. 1.
From an engineering point of view, tensegrity are a special

class of structures whose elements may simultaneously perform
the purposes of structural force, actuation, sense and feedback
control. They have a very high resistance/weight coefficient and
are easily deformable. In such kind of structures, theoretically,
pulleys or other kind of actuators may stretch/shorten some of
the constituting elements in order to substantially change their
form with a little variation of the structure’s energy. It has
been demonstrated that tensegrity structures are very similar to
cytoskeleton structures of unicellular organisms [8,9], some of
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Fig. 1. Example of tensegrity structure.

which are known to move. They are also very similar to muscle-
skeleton structures of high efficiency land animals that can reach
speeds up to 60 mph. As reported by Timoshenko and Young [24],
these beings incorporate tensional elements in their muscle-
skeleton system such that they maintain the structure integrity
while acting it, storing and distributing energy, [13].
Due to these similarities with such organisms, we think that

tensegrity structures may be a good candidate to construct mobile
robots with arbitrary forms and capable of self-deformation in
order to adapt efficiently to the environment where they work. Up
to now, tensegrity have been mainly used for static applications
where the length of all members is kept constant and actuation
is performed only to compensate for external perturbations. In
the last decades the tensegrity framework has been also used to
build deployable structures, although the tensegrity paradigm has
not been fully exploited either. It is not since very recent years
that we find some relevant works towards this goal: for instance,
Aldrich [1] put together several simple tensegrity structures to
build a redundant manipulator robot. Paul et al. [17] and Masic
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and Skelton [14] proposed different self-propelled tensegrity
architectures to build mobile robots.
The purpose of this paper is twofold: first, to study the dynamic

equations of motion for generic tensegrity that will allow us to
control them and hence obtaining the desired movement; second,
to demonstrate, by means of simulation, that we can theoretically
perform any trajectory in the spacewith a tensegrity-basedmobile
robot. So we present a detailed study of the dynamic equations of
motion for tensegrity thinking in using them to construct mobile
robots.
The study of the static and dynamic characteristics of such

structures has previously received some attention by the scientific
community in other areas. Some analytic solutions to the static
problemwere given byMurakami and Nishimura [16] and Kebiche
et al. [12], or more recently, a quite complete static analysis review
was given by Hernàndez and Mirats-Tur [7]. The dynamics of
tensegritywere first studied byMotro et al. [15]. Kanchanasaratool
and Williamson [10] studied dynamic particle models while
considering the bars to be massless; other studies, Skelton
et al. [19] or Sultan et al. [21] considermass on bars. Also non-linear
models and their linearization have been considered by Murakami
and Nishimura [16] or Sultan et al. [22]. All those studies consider
statics and dynamics from a structural point of view, for example
the behavior of a tensegrity dome under heavy winds, but have
not considered the possibility of a tensegrity with self-motion
capability. None of the cited studies has considered, as presented
here, the six degrees of freedom in the space.
This paper is organized as follows. We first obtain, in Section 2,

the general equations of motion for any tensegrity structure
by using Euler–Lagrange formulation. This is done for a generic
coordinates set in order to make evident the problem present
when inverting the inertia matrix. We then particularize for a
given set of coordinates in Section 3. Concretely, we analyze the
classical Euler-angles representation and, later, we present the
tensegrity motion equations using quaternions so as to avoid the
inertia matrix inversion problem. Next, as we want to simulate
the movement of a tensegrity-based robot, some analysis about
ground and friction is performed in Section 4. This will be later
used in the developed simulator, presented in Section 6. Section 5
hands in a particularization of the general equations of motion
for the case of a 3-bar tensegrity-based prism. This will be the
considered structure in Section 7 in order to study its control.
Results comprising different trajectories followed by this simple
tensegrity-based robot are reported in Section 8. Finally, the main
conclusions of this work are outlined in Section 9.

2. General equations of motion for a tensegrity structure

Consider a generic tensegrity structure T with b bars, and
hence, 2b nodes, connected by a set of c cables. Without loss of
generality, cylindrical tubular bars are considered with internal
end external radius r1i and r2i, mass mi, and length li. The purpose
of this section is to obtain the general Euler–Lagrange equations of
motion for such structures.
A general coordinates vector qTi = (pTi , s

T
i ), is used to define

the pose of the ith bar, where pi contains the position of the bar’s
center of mass (3 orthogonal components) and si its orientation (n
components). For each bar, qTi is independent and must have six
degrees of freedom, although it is important to note that qTi does
not necessarily has six components. In general, qi will have m =
3 + n components and an associated vector of n − 3 constraints,
8(qi) = 0.

Fig. 2. Common and bar attached coordinate systems.

2.1. Kinetic energy

Let Ti be the kinetic energy for the ith bar and T the total
kinetic energy for the tensegrity. Let Ii(qi) be the inertia matrix
referenced to the qi coordinates, Ii(qi) = Ci(si)TI

xyz
i Ci(si), then Ti

is obtained as:

Ti(qi, q̇i) =
1
2
miṗTi ṗi +

1
2
ṡTi Ii(si)ṡi (1)

where Ci(si) is the basis change matrix from the rotations
associated to qi, formed by ṡi, to a 3-D rotation basis adapted to the
ith bar in which the third component is the longitudinal axis of the
bar and the first two are orthogonal to it and between them (see
Fig. 2 for clarity). That is, Ci is the matrix relating ṡi to the angular
velocity of the bar, ωi = Ci(si)ṡi. On the other hand, I

xyz
i only

depends on the physical parameters of the bar, where ri = r21i+r
2
2i:

I xyzi =


1
12
mi(3ri + li2) 0 0

0
1
12
mi(3ri + li2) 0

0 0
1
2
miri

 . (2)

In order to obtain Ci(si), consider Si the matrix of basis change
from thebar-adapted basis topi. As Si is a rotationmatrix andhence
orthogonal,

STi Ṡi =

( 0 −Ωi3 Ωi2
Ωi3 0 −Ωi1
−Ωi2 Ωi1 0

)
. (3)

Each of the Ωij can be expressed as, Ωij(si) =
∑n
k=1 ajk(si)ṡik,

so,

Ci(si) =

(a11(si) a12(si) · · · a1n(si)
a21(si) a22(si) · · · a2n(si)
a31(si) a32(si) · · · a3n(si)

)
. (4)

Notice that Ii(qi) is symmetrical. Now, from (1) a new m × m
matrix containing information about displacement and rotational
energies can be defined,

Mi(qi) =
(
miI3×3 03×n

0n×3 Ii(qi)

)
(5)

and the kinetic energy for the ith bar is

Ti(qi, q̇i) =
1
2
q̇TiMi(qi)q̇i. (6)



Download	English	Version:

https://daneshyari.com/en/article/412874

Download	Persian	Version:

https://daneshyari.com/article/412874

Daneshyari.com

https://daneshyari.com/en/article/412874
https://daneshyari.com/article/412874
https://daneshyari.com/

