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ARTICLE INFO ABSTRACT

Available online 18 January 2010 Due to the tremendous increase of electronic information with respect to the size of data sets as well as
their dimension, dimension reduction and visualization of high-dimensional data has become one of the
key problems of data mining. Since embedding in lower dimensions necessarily includes a loss of
information, methods to explicitly control the information kept by a specific dimension reduction
technique are highly desirable. The incorporation of supervised class information constitutes an
important specific case. The aim is to preserve and potentially enhance the discrimination of classes in
lower dimensions. In this contribution we use an extension of prototype-based local distance learning,
which results in a nonlinear discriminative dissimilarity measure for a given labeled data manifold. The
learned local distance measure can be used as basis for other unsupervised dimension reduction
techniques, which take into account neighborhood information. We show the combination of different
dimension reduction techniques with a discriminative similarity measure learned by an extension of
learning vector quantization (LVQ) and their behavior with different parameter settings. The methods
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are introduced and discussed in terms of artificial and real world data sets.
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1. Introduction

The amount of electronic data doubles roughly every 20
months [1], and its sheer size makes it impossible for humans to
manually scan through the available information. At the same
time, rapid technological developments cause an increase of data
dimension, e.g. due to the increased sensitivity of sensor
technology (such as mass spectrometry) or the improved resolu-
tion of imaging techniques. This causes the need for reliable
dimension reduction and data visualization techniques to allow
humans to rapidly inspect large portions of data using their
impressive and highly sensitive visual perception capabilities.

Dimension reduction and visualization constitutes an active
field of research, see, e.g. [2-4] for recent overviews. The
embedding of high-dimensional data into lower dimension is
necessarily linked to loss of information. In the last decades an
enormous number of unsupervised dimension reduction methods
has been proposed. In general, unsupervised dimension reduction
is an ill-posed problem since a clear specification which proper-
ties of the data should be preserved, is missing. Standard criteria,
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for instance the distance measure employed for neighborhood
assignment, may turn out unsuitable for a given data set, and
relevant information often depends on the situation at hand.

If data labeling is available, the aim of dimension reduction can
be defined clearly: the preservation of the classification accuracy
in a reduced feature space. Supervised linear dimension reducers
are for example the generalized matrix learning vector quantiza-
tion (GMLVQ) [5], linear discriminant analysis (LDA) [6], targeted
projection pursuit [7], and discriminative component analysis [8].
Often, however, the classes cannot be separated by a linear
classifier while a nonlinear data projection better preserves the
relevant information. Examples for nonlinear discriminative
visualization techniques include, extensions of the self-organizing
map (SOM) incorporating class labels [9] or more general
auxiliary information [10]. In both cases, the metric of SOM is
adjusted such that it emphasizes the given auxiliary information
and, consequently, SOM displays the aspects relevant for
the given labeling. Further supervised dimension reduction
techniques are model-based visualization [11] and parametric
embedding [12]. In addition, linear schemes such as LDA can be
kernelized yielding a nonlinear supervised dimension reduction
scheme [13]. These models have the drawback that they are often
very costly (squared or cubic with respect to the number of
data points). Recent approaches provide scalable alternatives,
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sometimes at the cost of non-convexity of the problem [14-16].
However, in most methods, the kernel has to be chosen prior to
training and no metric adaptation according to the given label
information takes place.

The aim of this paper is to identify and investigate principled
possibilities to combine an adaptive metric and recent visualiza-
tion techniques towards a discriminative approach. We will
exploit the discriminative scheme exemplary for different types
of visualization, necessarily restricting the number of possible
combinations to exemplary cases. A number of alternative
combinations of metric learning and data visualization as well
as principled alternatives to arrive at discriminative visualization
techniques (such as, e.g. colored maximum variance unfolding
[17]) will not be tackled in this paper.

In this contribution we combine prototype-based matrix
learning schemes, which result in local discriminative dissim-
ilarity measures and local linear projections of the data, with
different neighborhood based nonlinear dimension reduction
techniques and a charting technique. The complexity of the
matrix learning technique is only linear in the number of points S,
their dimension N and can be controlled by the number of the
prototypes m and sweep through the training set t, leading to an
overall algorithm complexity of only O(S- N - m - t). In the second
step unsupervised techniques like manifold charting [18], Isomap
[19], locally linear embedding (LLE) [20], the exploration
observation machine (XOM) [21] and stochastic neighbor embed-
ding (SNE) [22] are performed incorporating the supervised
information from the LVQ approach. This leads to supervised
nonlinear dimension reduction and visualization techniques.
Note, for one presented training sample, the matrix learning
scheme only needs to compute the distances to all prototypes.
And the number of prototypes is usually much smaller than the
number of data points. However, the combination with another
dimension reduction technique may make the computation of the
distances of all data points necessary, e.g. with Isomap or SNE.
This is at least a quadratic problem but can be moderated by
approximations [23-25].

The following section gives a short overview over the
techniques. We focus on the question in how far local linear
discriminative data transformations as provided by GMLVQ offer
principled possibilities to extend standard unsupervised visuali-
zation tools to discriminative visualization. Section 3 discusses
the different approaches for one artificial and three real world
data sets and compares the results to popular supervised as well
as unsupervised dimension reduction techniques. Finally we
conclude in Section 4.

2. Supervised nonlinear dimension reduction

For general data sets a global linear reduction to lower
dimensions may not be sufficient to preserve the information
relevant for classification. In [3] it is argued that the combination
of several local linear projections to a nonlinear mapping can
yield promising results. We use this concept and learn discrimi-
native local linear low-dimensional projections from labeled data
using an efficient prototype based learning scheme, generalized
matrix learning vector quantization (GMLVQ). Locally linear
projections which result from this first step provide, on the one
hand, local transformations of the data points which preserve
the information relevant for the classification as much as possible.
Instead of the local coordinates, local distances induced by
these local representation of data can be considered. As a conse-
quence, visualization techniques which rely on local coordinate
systems or local distances, respectively, can be combined with
this first step to arrive at a discriminative global nonlinear

projection method. This way, an incorporation into techniques
such as manifold charting [18], Isomap [19], locally linear embed-
ding (LLE) [20], stochastic neighbor embedding (SNE) [22],
maximum variance unfolding (MVU) [26] and the exploration
observation machine (XOM) [21] becomes possible.

The following subsections give a short overview over the initial
prototype based matrix learning scheme and the different
visualization algorithms.

2.1. Localized LiRaM LVQ

Learning vector quantization (LVQ) [27] constitutes a particu-
larly intuitive classification algorithm which represents data by
means of prototypes. LVQ itself constitutes a heuristic algorithm,
hence extensions have been proposed for which convergence and
learnability can be guaranteed [28,29]. One particularly crucial
aspect of LVQ schemes is the dependency on the underlying
metric, usually the Euclidean metric, which may not suit the
underlying data structure. Therefore, general metric adaptation
has been introduced into LVQ schemes [29,30]. Recent extensions
parameterize the distance measure in terms of a relevance matrix,
the rank of which may be controlled explicitly. The algorithm
suggested in [5] can be employed for linear dimension reduction
and visualization of labeled data. The local linear version
presented here provides the ability to learn local low-dimensional
projections and combine them into a nonlinear global embedding
using charting techniques or projection methods based on local
data topologies or local distances. Several schemes for adaptive
distance learning exist, for example large margin nearest neighbor
(LMNN) [31] to name just one. We compared the LMNN technique
with the LVQ based approach on the basis of a content based
image retrieval application in an earlier publication (see [32]).
Furthermore it should be mentioned that LMNN learns a global
distance measure. More powerful, local distance learning would
presumably involve higher computational complexity and should
be feasible for small dimensionality N only.

We consider training data x;e RN, i=1...S with labels y;
corresponding to one of C classes, respectively. The aim of LVQ is to
find m prototypes w; e RN with class labels cwj) e{l,...,C} such
that they represent the classification as accurately as possible.
A data point ¥; is assigned to the class of its closest prototype w;
where d(x;, w;) < d(x;, w)) for all j # I. d usually denotes the squared
Euclidean distance d(x;, w;) = (x,-—wj)T(xi—vulj). Generalized LVQ
(GLVQ) [33] adapts prototype locations by minimizing the cost
function

Q d(wy, x)—d(wg, X;)
Foive = ,; ¢<d(W],Xi)+d(WK,Xi)>’ @

where w; denotes the closest prototype with the same class label
as x;, and wy is the closest prototype with a different class label. @
is a monotonic function, e.g. the logistic function or the identity. In
this work we use the identity. This cost function aims at an
adaptation of the prototypes such that a large hypothesis margin is
obtained, this way achieving correct classification and, at the same
time, robustness of the classification, see [34]. A learning algorithm
can be derived from the cost function Egyq by means of a
stochastic gradient descent as shown in [29,28].

Matrix learning in GLVQ (GMLVQ) [30,34] substitutes the usual
squared Euclidean distance d by a more advanced dissimilarity
measure which contains adaptive parameters, thus resulting in a
more complex and better adaptable classifier. In [5], it was
proposed to choose the dissimilarity as

di(wy, x;) = (%—w;) " A;(x—w)), ()
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